• Title/Summary/Keyword: Forest soil map

Search Result 149, Processing Time 0.027 seconds

APPLICATION OF LIKELIHOOD RATIO A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Choi, Jae-Won;Lee, Saro;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.63-63
    • /
    • 2003
  • The aim of this study is to apply and verify of Bayesian probability model, the likelihood ratio and statistical model, at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database. Texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the likelihood ratio coefficient were overlaid for landslide susceptibility mapping, Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF

A Study On the Classification and Characteristics of Wetlands - Cases on the Watershed of Tumen River downstream in China - (중국 두만강 하류 유역의 습지 분류 특성에 관한 연구)

  • Zhu, Wei-Hong;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • This study aims to understand wetland distribution and type-specific classification features with a focus on Tumen River downstream in China by adjusting and improving the classification system used in Korea with a reference to international wetland classification systems and their criteria & methods. In this study, wetland types were determined based on hydrology, vegetation, and soil conditions, which are the most basic elements of wetlands. Also, topography analytical map, vegetation analytical map, and soil analytical map for wetland classification were developed and used based on currently available topography map, vegetation map, and soil map. In addition, codes were defined based on topography, location, hydrology, and vegetation. The result shows that, in the Tumen River downstream, wetlands are often found near natural revetment and terrace land & river-bed lakes. In the discovered wetlands, riverine, lacustrine, and inland wetlands were mostly found at system level. Riparian and human-made wetlands were also identified. At a sub-system level, perennial and seasonal wetlands were found to a similar degree. At a class level, perennial open water, herbal plants, and shrubs were mostly found and sandy plain, hydrophytes, and forest tree types were also observed. An overall detailed classification shows that a total of 17 wetland types were found and a large distribution of sand dunes and river-bed lakes, which are scarce in Northeast Asia, indicates that other rare wetland types such as palustrine seasonal sand plain wetland and lacustrine seasonal sand plain wetland may be discovered.

MAPPING SOIL ORGANIC MATTER CONTENT IN FLOODPLAINS USING A DIGITAL SOIL DATABASE AND GIS TECHNIQUES: A CASE STUDY WITH A TOPOGRAPHIC FACTOR IN NORTHEAST KANSAS

  • Park, Sunyurp
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.533-550
    • /
    • 2002
  • Soil organic matter (SOM) content and other physical soil properties were extracted from a digital soil database, the Soil Survey Geographic (SSURGO) database, to map the amount of SOM and determine its relationship with topographic positions in floodplain areas along a river basin in Douglas County, Kansas. In the floodplains, results showed that slope and SOM content had a significant negative relationship. Soils near river channels were deep and nearly level, and they had the greatest SOM content in the floodplain areas. For the whole county, SOM content was influenced primarily by soil depth and percent SOM by weight. Among different slope areas, soils on mid-range slopes (10-15%) and ridgetops had the highest SOM content because they had relatively high percent SOM content by weight and very deep soils, respectively. SOM content was also significantly variable among different land cover types. Forest/woodland had significantly higher SOM content than others, followed by cropland, grassland, and urban areas.

  • PDF

Preparation of Soil Input Files to a Crop Model Using the Korean Soil Information System (흙토람 데이터베이스를 활용한 작물 모델의 토양입력자료 생성)

  • Yoo, Byoung Hyun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.174-179
    • /
    • 2017
  • Soil parameters are required inputs to crop models, which estimate crop yield under a given environment condition. The Korean Soil Information System (KSIS), which provides detailed soil profile record of 390 soil series in the HTML (HyperText Markup Language) format, would be useful to prepare soil input files. Korean Soil Information System Processing Tool (KSISPT) was developed to aid generation of soil input data based on the KSIS database. Java was used to implement the tool that consists of a set of modules for parsing the HTML document of the KSIS, storing data required for preparing soil input file, calculating additional soil parameter, and writing soil input file to a local disk. Using the automated soil data preparation tool, about 940 soil input data were created for the DSSAT model and the ORYZA 2000 model, respectively. In combination with soil series distribution map at 30m resolution, spatial analysis of crop yield could be projected under climate change, which would help the development of adaptation strategies.

Derivation of Suitable-Site Environmental Factors in Robinia pseudoacacia Stands Using Type I Quantification Theory (수량화이론 I방법에 의한 아까시나무 임분의 적지 환경인자 도출)

  • Kim, Sora;Song, Jungeun;Park, Chunhee;Min, Suhui;Hong, Sunghee;Lim, Jongsoo;Son, Yeongmo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.428-434
    • /
    • 2022
  • This study was conducted to derive the site index of forest productivity of Robinia pseudoacacia (honey plant) to characterize suitable planting sites and to investigate the effect of the site environmental factors on the site index using the quantification theory I method. The data used in the analysis were growth factors (stand age, dominant height, etc.) of the 6th national forest resources survey and various site environmental factors of a forest soil map (1:5,000). The average site index value of the R. pseudoacacia stand in Korea was 14 (range, 8 to 18). The environmental factors affecting the site index were parent rock, climatic zone, soil texture, local topography, and altitude. The accuracy of the estimation model using quantification theory I was only 33%. However, the correlation between the site index and the site environmental factors was statistically significant at the 1% level. Results of quantification analysis between site index and site environmental factors revealed that metamorphic and igneous rocks received high grades as parent rocks, climate zones received higher grades than central temperate zone, clay loam and silt loam received high grades in soil texture, and hillside received a high grade in local topography. Analysis of the partial correlation between site topographical factors and forest productivity (site index) found that soil class and altitude were partially correlated to x by 0.4129 and 0.4023, respectively, indicating that these factors are the most influential variables.

Analysis of Soil Erosion Hazard Zone using GIS (GIS를 이용한 토양침식 위험지역 분석)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Yeon, Gyu-Bang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.22-32
    • /
    • 2003
  • The purpose of this study is to analyze soil erosion quantity of a basin by using DEM, soil map and landuse map and to find a soil erosion hazard zone in a basin based on this data. In this study, RUSLE was used to analyze soil loss quantity and the research area chosen is Mushim stream which branches off the Geum river. This study used a mean annual precipitation of Cheongju Meteorological Observation was used as a hydrological data and DEM, the detailed soil map(1/25,000), the landuse map collected respectively from Ministry of Environment, National Institute of Agricultural Science and Technology and Ministry of Construction and Transportation. The subject map was drawn to analyze soil erosion hazard zone by using the above data and maps. According to the results of the analysis, a lot of soil loss shows in a bare area. In case of a forest, a slope has a lot of influence on soil loss. The integration and analysis of the above gave the result that $193,730.3m^2$corresponding to 8.5% of the places of which the slope is over 20 degree in a bare area was found to have a higher chance of soil erosion.

  • PDF

Risk Assessment of Soil Erosion in Gyeongju Using RUSLE Method (RUSLE 기법을 이용한 경주지역의 토양침식 위험도 평가)

  • Oh, Jeong-Hak;You, Ju-Han;Kim, Kyung-Tae;Lee, Woo-Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.313-324
    • /
    • 2011
  • The purpose of this study is to present the raw data for establishing the plan of top soil conservation in soil environment and preventing the soil loss by establishing the potential amount of soil loss using RUSLE. The results are as follows. To apply the RUSLE model, we calculated the potential amount of soil loss by using 5 factors; rainfall erosion factor(R), topographical factor(LS), soil erosion factor(K), land cover factor(C) and erosion control factor(P). The assessment map of soil loss was drawn up by classifying 5 grades. According to the soil loss estimation by the RUSLE, it showed that approximately 83.9% of the study area had relatively lower possibility of soil loss which was the 1 ton/ha in annual soil loss. Whereas, the 7.0% of the study area was defined as high risk area which was the 10 ton/ha in annual. Therefore, this area was needed that there was environment-friendly construction of farm land, improvement of cultivation environment and so forth. In future, if we will analyze the amount of soil loss of Gyeongju national park and Hyeongsan river watershed, we will offer the help to establishing the conservation plan of soil environment in Gyeongsangbuk-do.

Analysis of Hydrological Impact for Long-term Land Cover Change using WMS HEC-l Model in Anseong-Cheon Watershed (WMS HEC-1을 이용한 안성천 유역의 경년 수문 변화 분석)

  • Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.293-296
    • /
    • 2002
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change urbanization of Anseong-cheon watershed $(585.09km^2)$. WMS (Watershed Modeling System) HEC-1 was adopted, and burned DEM with $200{\times}200m$ resolution and soil map reclassified by hydrologic soil groups were prepared. Land cover for 1985, 1990, 1995 and 2000 were classified by maximum likelihood method, using Landsat MSS and TM imageries. Calibration and verification of HEC-1 were conducted using 4 storm events. Peak flow at Pyeong taek station increased $25.9m^3/sec$ during the past 15 years due to paddy and forest decrease. Streamflow impact by just paddy area decrease and forest area decrease were also analysed keeping watershed CN values unchanged of the given year, respectively.

  • PDF

Site Index Equations and Estimation of Productive Areas for Major Pine Species by Climatic Zones Using Environmental Factors (기후대별 입지환경 인자에 의한 소나무류의 지위지수 추정식 및 적지 구명)

  • Shin, Man-Yong;Won, Hyung-Kyu;Lee, Seung-Woo;Lee, Yoon-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.179-187
    • /
    • 2007
  • This study was conducted to develop site index equations for some pine species by climatic zones based on the relationships between site index and environmental factors. The selected pine species were Pinus densiflora Sieb. et. Zucc., Pinus densiflora for, erecta, and Pinus thunbergii. A total of 28 environmental factors were obtained from a digital forest site map. The influence of 28 environmental factors on site index was evaluated by multiple regression analysis. Four to eight environmental factors were selected in the final site index equation for pine species by climatic zones. The site index equations developed in this study was then verified by three evaluation statistics such as model's estimation bias, model's precision and mean square error type of measure. We concluded that the site index equations for the pine species by climatic Bones were capable of estimating forest site productivity. Based on these site index equations, the amount of productive areas for the species by climatic zones was estimated by applying the GIS technique to digital forest maps.

Estimation of Precipitation Recharge in the Pyungchang River Basin Using SCS-CN Method (SCS-CN방법을 이용한 평창강 유역의 강수 함양량 선정)

  • Lee Seung Hyun;Bae Sang Keun
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1033-1039
    • /
    • 2004
  • The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to estimate the precipitation recharge in the Pyungchang river basin. Two small areas of the basin are selected for this study. The CN values are determined by considering the type of soil, soil cover and land use with the digital map of 1:25,000. Forest covers more than $94{\%}$ of the study area.. The CN values for the study area vary between 47 in the forest area and 94 in the bare soil under AMC 2 condition. The precipitation recharge rate is calculated for the year when the precipitation data is available since 1990. To obtain the infiltration rate, the index of CN and five day antecedent moisture conditions are applied to each precipitation event during the study period. As a result of estimation, the value of precipitation recharge ratio in the study area vary between $15.2{\%}\;and\;35.7{\%}$ for the total precipitation of the year. The average annual precipitation recharge rate is $26.4{\%}\;and\;26.8{\%}$, meaning 377.9mm/year and 397.5mm/year in each basin.