• Title/Summary/Keyword: Forest fire severity

Search Result 36, Processing Time 0.018 seconds

Ecological resilience of soil oribatid mite communities after the fire disturbance

  • Kim, Ji Won;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.36 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • This study investigated the impact of the fire disturbance and the pattern of recovery of soil dwelling oribatid mite communities with respect to the resilience from the fire disturbance. Oribatid mites are important decomposer animals of plant debris in soil with the feeding habits of saprophagy and mycophagy. Massive wild fire reduced soil oribatid mite abundance and diversity. The impact varied relative to the intensity of the disturbance. The proportion of the species common to the non-disturbed natural site increased as the time after the disturbance elapsed, which implying some degree of naturalness occurring in reorganization phase of the oribatid mite community. From the sites with different degree of fire impact, we found higher diversity in intermediately disturbed sites than in severely disturbed or non-disturbed site, supporting the intermediate disturbance hypothesis. Also this study showed that with differential degree of disturbance plots, resilience pattern after the disturbance can be explored even with shorter period research relative to the ecological succession of community.

Fire Severity Mapping Using a Single Post-Fire Landsat 7 ETM+ Imagery (단일 시기의 Landsat 7 ETM+ 영상을 이용한 산불피해지도 작성)

  • 원강영;임정호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.85-97
    • /
    • 2001
  • The KT(Kauth-Thomas) and IHS(Intensity-Hue-Saturation) transformation techniques were introduced and compared to investigate fire-scarred areas with single post-fire Landsat 7 ETM+ image. This study consists of two parts. First, using only geometrically corrected imagery, it was examined whether or not the different level of fire-damaged areas could be detected by simple slicing method within the image enhanced by the IHS transform. As a result, since the spectral distribution of each class on each IHS component was overlaid, the simple slicing method did not seem appropriate for the delineation of the areas of the different level of fire severity. Second, the image rectified by both radiometrically and topographically was enhanced by the KT transformation and the IHS transformation, respectively. Then, the images were classified by the maximum likelihood method. The cross-validation was performed for the compensation of relatively small set of ground truth data. The results showed that KT transformation produced better accuracy than IHS transformation. In addition, the KT feature spaces and the spectral distribution of IHS components were analyzed on the graph. This study has shown that, as for the detection of the different level of fire severity, the KT transformation reflects the ground physical conditions better than the IHS transformation.

A Simulation Model for the Study on the Forest Fire Pattern (산불확산패턴 연구를 위한 시뮬레이션 모델)

  • Song, Hark-Soo;Jeon, Wonju;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Because forest fires are predicted to increase in severity and frequency under global climate change with important environmental implications, an understanding of fire dynamics is critical for mitigation of these negative effects. For the reason, researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed the simulation models to mimic the forest fire spread patterns. In this study, we suggested a novel model considering the wind effect. Our theoretical forest was comprised of two different tree species with varying probabilities of transferring fire that were randomly distributed in space at densities ranging from 0.0 (low) to 1.0 (high). We then studied the distributional patterns of burnt trees using a two-dimensional stochastic cellular automata model with minimized local rules. We investigated the time, T, that the number of burnt trees reaches 25% of the whole trees for different values of the initial tree density, fire transition probability, and the degree of wind strength. Simulation results showed that the values of T decreased with the increase of tree density, and the wind effect decreased in the case of too high or low tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

A Study on the Hazard and Risk Analysis of Hospital in Korea - Focused on Local Medical Centers (의료기관의 위험도 분석 조사 - 지역공공의료원을 중심으로)

  • Kim, Youngaee;Song, Sanghoon;Lee, Hyunjin;Kim, Taeyun
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.31-39
    • /
    • 2022
  • The purpose of this study is to analyse the hazard risk by examining the magnitude and severity of each type of hazard in order to mitigate and prepare for disasters in medical facilities. Methods: The hazard risk analysis for hazard types was surveyed for team leaders of medical facilities. The questionnaire analyzed data from 27 facilities, which were returned from 41 Local Medical Centers. Results: When looking at the 'Risk' by category type of hazard, the influence of health safety and fire/energy safety comes first, followed by natural disaster, facility safety, and crime safety. On the other hand, as for 'Magnitude', facility safety and crime safety come first, followed by health safety, fire/energy safety, and natural disasters. Most of the top types of disaster judged to have high hazard in medical facilities are health types. The top five priorities of hazard in medical facilities, they are affected by the geographical and industrial conditions of the treatment area. In the case of cities, the hazard was found to be high in the order of infectious disease, patient surge, and wind and flood damage. On the other hand, in rural areas, livestock diseases and infectious diseases showed the highest hazard. In the case of forest areas, the hazard was high in the order of wildfire, fire accident, lightning, tide, earthquake, and landslide, whereas in coastal areas of industrial complexes, the hazard was high due to fire, landslide, water pollution, marine pollution, and chemical spill accident. Implications: Through the research, standards will be established for the design of hospitals with disaster preparedness, and will contribute to the preparation of preemptive measures in terms of maintenance.

A Study on Estimation of Forest Burn Severity Using Kompsat-3A Images (Kompsat-3A호 영상을 활용한 산불피해 강도 산정에 관한 연구)

  • Minsun Yang;Min-A Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1299-1308
    • /
    • 2023
  • Forest fires are becoming more frequent and larger around the world due to climate change. Remote sensing such as satellite images can be used as an alternative or assistance data because it reduces various difficulties of field survey. Forest burn severity (differenced normalized burn ratio, dNBR) is calculated through the difference in normalized burn ratio (NBR) before and after a forest fire. The images used in the NBR formula are based on Landsat's near-infrared (NIR) and short-wavelength infrared (SWIR) bands. South Korea's satellite images don't have a SWIR band. So domestic studies related to forest burn severity calculated dNBR using overseas images or indirectly using the normalized difference vegetation index (NDVI) using South Korea's satellite images. Therefore, in this study, dNBR was calculated by substituting the mid-wavelength infrared (MWIR) band of Kompsat-3A (K3A) instead of the SWIR band in the NBR formula. The results were compared with the dNBR results obtained through Landsat which is the standard for dNBR formula. As a result, it was shown that dNBR using K3A's MWIR band has a wider range of values and can be expressed in more detail than dNBR using Landsat's SWIR band. Therefore, it is considered that K3A images will be highly useful in surveying burn areas and severity affected by forest fires. In addition, this study used the K3A's MWIR band images degraded to 30 m. It is considered that much better results will be obtained if a higher-resolution MWIR band is used.

Influences of Environmental Gradients on the Patterns of Vegetation Structure and Tree Age Distribution in the East Side of Cascade Range, Washington, USA (워싱턴주(州) 케스케이드산맥(山脈) 동(東)쪽 산림(山林)에서 환경구배(環境勾配)가 식생구조(植生構造)와 연령분포(年齡分布)에 미치는 영향(影響))

  • Woo, Su Young;Lee, Kyung Joon;Lee, Sang Don
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.107-119
    • /
    • 1996
  • To understand vegetation changes along environmental gradients in the natural forests in the east side of the Cascade Range in Washington state, USA, line transects were used to sample six different forest environments in the Wenatchee National Forest in the north-facing and south-facing sites at 975, 1280 and 1700m elevation. Data were analyzed using ordination by detranded correspondence analysis. Pseudotsuga menziesii was found as one of the dominant species on all the six sites regardless of elevation or aspect, while Pinus ponderosa was dominant on south slopes only. Abies grandis and A. lasiocarpa were dominant species on north slopes at elevations of 1280 and 1700m, respectively. Moisture, as it related to aspect, was identified as one of the most important environmental gradients for explaining the variation of vegetation types. On north-facing slopes, compared to south-facing slopes, where moisture was not as limiting and canopies could grow denser, probably, elevation or competitive interaction was more important. Species diversity tended to decrease with increasing environmental severity, with south slopes having less diversity than north slopes due to extended water stress and harsher temperature extremes on south slopes. The age structure on north-facing and south-facing slopes was different. Light intensity, moisture and climate were different between these two slopes. Large scale disturbances(e.g., big fire or insects) were major causes in changing age structure. Younger trees showed a closer relationship between size and age than adult trees. DBH values of shade intolerant species in south-facing slope were bigger than those of north-facing slope, which suggested that aspect of stands be the most important factor for age and size.

  • PDF