• Title/Summary/Keyword: Forest fire prediction

Search Result 55, Processing Time 0.034 seconds

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining (예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1119-1126
    • /
    • 2002
  • In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

Development of the Surface Forest Fire Behavior Prediction Model Using GIS (GIS를 이용한 지표화 확산예측모델의 개발)

  • Lee, Byungdoo;Chung, Joosang;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.481-487
    • /
    • 2005
  • In this study, a GIS model to simulate the behavior of surface forest fires was developed on the basis of forest fire growth prediction algorithm. This model consists of three modules for data-handling, simulation and report writing. The data-handling module was designed to interpret such forest fire environment factors as terrain, fuel and weather and provide sets of data required in analyzing fire behavior. The simulation module simulates the fire and determines spread velocity, fire intensity and burnt area over time associated with terrain slope, wind, effective humidity and such fuel condition factors as fuel depth, fuel loading and moisture content for fire extinction. The module is equipped with the functions to infer the fuel condition factors from the information extracted from digital vegetation map sand the fuel moisture from the weather conditions including effective humidity, maximum temperature, precipitation and hourly irradiation. The report writer has the function to provide results of a series of analyses for fire prediction. A performance test of the model with the 2002 Chungyang forest fire showed the predictive accuracy of 61% in spread rate.

A STUDY on FOREST FIRE SPREADING ALGORITHM with CALCULATED WIND DISTRIBUTION

  • Song, J.H.;Kim, E.S.;Lim, H.J.;Kim, H.;Kim, H.S.;Lee, S.Y
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.305-310
    • /
    • 1997
  • There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.

  • PDF

MULTI-SENSOR INTEGRATION SYSTEM FOR FOREST FIRE PREVENTION

  • Kim Eun Hee;Chi Jeong Hee;Shon Ho Sun;Jung Doo Young;Lee Chung Ho;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.450-453
    • /
    • 2005
  • A forest fire occurs mainly as natural factor such as wind, temperature or human factor such as light. Recently, the most of forest fire prevention is prediction or prevision against forest fire by using remote sensing technology. However in order to forest fire prevention, the remote sensing has many limitations such as high cost and advanced technologies and so on. Therefore, we need to multisensor integration system that utilize not only remote sensing but also in-situ sensing in order to reduce large damage of forest fire though analysis of happen cause and prediction routing of occurred forest fire. In this paper we propose a multisensor integration system that offers prediction information of factors and route of forest fire by integrates collected data from remote sensor and in-situ sensor for forest fire prevention. The proposed system is based on wireless sensor network for collect observed data from various sensors. The proposed system not only offers great quality information because firstly, raw data level fuse different format of collected data from remote and in-situ sensor but also accomplish information level fusion based on result of first stage. Offered information from our system can help early prevention of factor and early prevision against occurred forest fire which transfer to SMS service or alert service into monitoring interface of administrator.

  • PDF

CORRELATION ANALYSIS METHOD OF SENSOR DATA FOR PREDICTING THE FOREST FIRE

  • Shon Ho Sun;Chi Jeong Hee;Kim Eun Hee;Ryu Keun Ho;Jung Doo Yeong;kim Kyung Ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.186-188
    • /
    • 2005
  • Because forest fire changes the direction according to the environmental elements, it is difficult to predict the direction of it. Currently, though some researchers have been studied to which predict the forest fire occurrence and the direction of it, using the remote detection technique, it is not enough and efficient. And recently because of the development of the sensor technique, a lot of In-Situ sensors are being developed. These kinds of In-Situ sensor data are used to collect the environmental elements such as temperature, humidity, and the velocity of the wind. Accordingly we need the prediction technique about the environmental elements analysis and the direction of the forest fire, using the In-Situ sensor data. In this paper, as a technique for predicting the direction of the forest fire, we propose the correlation analysis technique about In-Situ sensor data such as temperature, humidity, the velocity of the wind. The proposed technique is based on the clustering method and clusters the In-Situ sensor data. And then it analyzes the correlation of the multivariate correlations among clusters. These kinds of prediction information not only helps to predict the direction of the forest fire, but also finds the solution after predicting the environmental elements of the forest fire. Accordingly, this technique is expected to reduce the damage by the forest fire which occurs frequently these days.

  • PDF

A Numerical Study of Flame Spread of A Surface Forest Fire (지표화 산불의 화염전파 수치해석)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Kim, Kwang-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.80-83
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-dimensional surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-dimensional surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals has a error of less than 20%.

  • PDF

A Study on Fire Spreading Prediction Program by Flow Field Analysis (유동장(流動場) 해석(解析)을 통한 산불확산예측(擴散豫測) 프로그램의 개발(開發))

  • Kim, Eng-Sik;Lee, Si-Young;Lim, Hoe-Jie;Kim, Hong;Song, Jong-Hun;Kim, Soo-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.528-534
    • /
    • 1998
  • There are many parameters in prediction of forest fire spread. Among others wind and slope factors are considered to be the important parameters in spread of forest fire. Generally, all the inclined planes with same slopes can not have the same wind velocity in complex mountain area. But this effect has been disregarded in complex geometry. In this paper, wind values which have velocity and direction is calculated by applying computational fluid dynamics to the forest geometry. These results are applied for forest fire spreading algorithm with experimental Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire has correspondence about 90%.

  • PDF

A Study on the model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Ji, Young-Moo;Park, Jung-Sang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.358-361
    • /
    • 2008
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For numerical analysis, the Boussinesq fluid approximation and line fire model, which is assumed by the shape of forest fire spreading, are adopted. Comparing 3-D full numerical solutions with 2-D similarity solution, it has been built a new model that is capable of temperature prediction along the symmetric vertical axis in both cases of laminar and turbulent flows.

  • PDF

Comparison a Forest Fire Spread variation according to weather condition change (기후조건 변화에 따른 산불확산 변화 비교)

  • Lee, Si-Young;Park, Houng-Sek
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.490-494
    • /
    • 2008
  • We simulated a forest fire which was occurred in Yangyang area on 2005 and compared a results between two different weather conditions(real weather condition and mean weather condition since 1968) using FARSITE, which is a forest fire spread simulator for preventing and predicting fire in USDA. And, we researched a problem in the transition for introducing, so we serve the basic method for prevention and attacking fire. In the result, severe weather condition on 2005 effected a forest fire behavior. The rate of spread under real weather condition was about 4 times faster than mean weather condition. Damaged area was about 10 time than mean weather condition. Therefore, Climate change will make a more sever fire season. As we will encounter to need for accurate prediction in near future, it will be necessary to predict a forest fire linked with future wether and fuel condition.

  • PDF