• Title/Summary/Keyword: Forest ecosystem park

Search Result 258, Processing Time 0.027 seconds

The Water Deer on a Road: Road-Kill Characteristics of a Nationally Abundant but Internationally Threatened Species

  • Kim, Kyungmin;Seo, Hyunjin;Woo, Donggul;Park, Taejin;Song, Euigeun
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2021
  • Despite numerous efforts on reducing road-kill worldwide, the collisions have been occurring continuously. Many factors are affecting road-kill occurrences and the effect is various by species. We investigated Hydropotes inermis argyropus road-kill characteristics on the national highway. We examined 9,099 H. i. argyropus road-kill points with distance to the gaps on road (interchange and intersection) and distance to six natural land-cover types as explanatory variables. We also examined the number of road-kill occurrences according to temporal variation using chi-square test with 9,658 events. In general, H. i. argyropus road-kill location tended to occur close to the gaps on road, agricultural lands and forests. The average distance from road-kill to the gap was 694.7 m and 78.6% of the collisions were occurred within 1 km from the gaps. In addition, Kruskal-Wallis test showed the distance between road-kill points and each land cover and the gaps was significantly different. The temporal analyses showed that the differences of the H. i. argyropus road-kill frequency are significant in both month and season. Our results implies H. i. argyropus road-kill location tended to occur close to the gaps on road, agricultural lands and forests in general, especially during May and June, according to their seasonal behavior. Thus, we suggest there is a need of concentrated management on the roads with specific characteristics for both wildlife and human safety.

The Restoration Technique of Native Forest Resources on the Development Land applied in the New Campus of Kyushu University, Japan (일본(日本) 구주대(九州大) 신(新)캠퍼스 개발지구에 적용된 개발훼손지(開發毁損地)의 원생림(原生林) 복원기술(復元技術)에 관한 고찰(考察))

  • Park, Chong-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.50-57
    • /
    • 2002
  • The restoration techniques of large disturbed land containing native forest resources and soil animals were investigated on the new campus area of Kyushu University in Japan. Important techniques to restore native forest and biodiversity in that area are transplantation of existing large trees, transplantation of the forest soil, transplantation of native tree stools, and the reuse of wood and bamboo chips. The benefits can be obtained by using these methods. Firstly, the native genetic resources that would be discarded as part of the land development can be reused. Secondary, the time taken to become a high growth forest as opposed to the practice of planting saplings or grass seeds can be reduced. At last, the native forest ecosystem containing various under-story vegetations and soil animals can be conserved and regenerated. In addition, big and small ponds were constructed in the biodiversity preservation zone to preserve rare plants, rare animals, and native aquatic animals. And these plants and animals were transplanted and moved to ponds.

Strategic Prospects of Environmental Restoration of Stream Side in Japan(I) (일본(日本)에서 한류변(漢流邊)의 환경부원(環境復元) 발전전략(發展戰略)(I))

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.80-90
    • /
    • 2000
  • This study was carried out to introduce current status and development strategy for an environmental restoration of stream side in Japan, and to consider a methodology which could be effectively applied for the environmental restoration of stream side in Korea. Since the end of 20th century, the native ecology and landscape of Japan remained only a limited areas such as stream side, water side and forest areas. Therefore, recently the works of forest conservation and erosion control of environmental restoration on stream side tended to increased. The strategic prospects of environmental restoration in Japan were summarized as follows : 1. From the ecological point of view, we have to develop a certain method and technology in construction of forest conservation and erosion control to prevent environmental problem from erosion control works. 2. We have to restore not only a continuity of stream side forest from a primitive area to an estuary but also the stream side forest to preserve and restore a stream side vegetation on a primitive watershed areas. 3. We have to improve a method of construction or removal of a structure which were constructed in the stream to restore a water side environment and an interaction system for an integration on a forest land, stream, and erosion control. Additionally, we have to establish an integrated evaluation method and an enforcement system after investigation of influences on natural environment, stream, and forest etc. 4. We have to conduct an integrated research to investigate the ecosystem of stream side, and construct environmentally friendly water park and erosion control park which considered natural environment and its landscape. Additionally, we need to introduce and adopt a natural style stream construction method to restore a water side areas.

  • PDF

Changes of Ground-dwelling Arthropod Communities for 10 Years after Thinning in a Pinus koraiensis Plantation (잣나무림에서 간벌 이후 지표 절지동물 군집의 변화 특성 분석)

  • Lee, Dae-Seong;Kwon, Tae-Sung;Kim, Sung-Soo;Park, Young Kyu;Yang, Hee Moon;Choi, Won Il;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.208-219
    • /
    • 2020
  • Forest thinning brought the large variation to forest ecosystem including environment and animal. Our study was result of long-term monitoring for ground-dwelling arthropod communities after thinning in forest ecosystem. In this study, we conducted field study on plantation forest in Chuncheon, Korea in 2018, and compared with previous study data (2006 and 2008). We found that the effect of thinning was still existent 10 years later from thinning with difference of habitat environment(depth of ground organic matter, coverage rate of ground vegetation and canopy). And ground-dwelling arthropod communities showed changes of abundance and taxa at the study area and thinning conditions. Ground-dwelling arthropod communities in 2018 were dominant in the order of Diptera, Hymenoptera, Coleoptera (Insecta), Araneae (Arachnida) and Collembola (Collembola). Among the conditions of thinning, Araneae (Arachnida), Coleoptera and Hymenoptera (Insecta) showed amount of abundance in heavy thinning. And Collembola (Collembola) and Diptera (Insecta) were most common in area of light thinning. In 2018 ground-dwelling arthropod communities, abundance of Diptera and Coleoptera (Insecta) and Isopoda (Crustacea) were decreased although Hemiptera and Orthoptera (Insecta) were increased than 2008 arthropod communities. Arthropod communities in 2018 were more similar with those in 2008 (after thinning) than with those in 2006 (before thinning).

A Study on the Recovery Rate of Vegetation in Forest Fire Damage Areas Using Sentinel-2B Satellite Images (Sentinel-2B 위성 영상을 활용한 산불 피해지역 식생 회복률에 관한 연구)

  • Gumsung Cheon;Kwangil Cheon;Byung Bae Park
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.463-472
    • /
    • 2023
  • The amount of damage and the area of damage to forest fires are increasing globally, and the effectiveness analysis of the restoration method after the damage is performed insufficient. This study calculated the area of forest fire damage was calculated using Sentinel-2B satellite images and stack map and the intensity of forest fire damage is analyzed according to the forest type. In addition, the vegetation index was calculated using various wavelength bands. Based on the results, the vegetation resilience by the restoration method was quantitatively. As results, areas with a high proportion of coniferous forests suffered high intensity forest fire damage, and areas with a relatively high ratio of mixed and broad-leaved forests tended to have low forest fire damage. Also, artificial forests showed a recovery of about 92.7% compared to before forest fires and natural forests showed a recovery of about 99.6% from the result of analyzing vegetation resilience in artificial and natural forests after forest fires. Accordingly, it was confirmed that natural forests after forest fire damage had superior vegetation resilience compared to artificial forests. It can be proposed that this study is meaningful in providing important information for efficiently restoring the affected target site and the selection criteria for trees to reduce forest fire damage through the evaluation of vegetation resilience by the intensity of forest fire damage and restoration methods.

Ecosystem Service Valuation on Groundwater Storage Capacity by Biotope Type (지하수저류량 평가를 통한 비오톱 유형별 생태계서비스 효과 분석)

  • Kang, Deok-Ho;Park, In-Hwan;Kim, Jin-Hyo;Lee, Soon-Ju;Kwon, Oh-Sung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.1-13
    • /
    • 2017
  • Recently, due to worldwide industralization and urbanization, natural environment has been severly damaged and global warning is worsening. Heat wave, torrential rainfall, typhoon and other natural disasters continuously occur due to global warming. Policies such as carbon emission regulation are taken into effect to solve such problems. Such global trend has affected interest to natural ecosystem and developed as a concept of ecosystem-services. This study particularly focused on ground water storage capacity among various ecosystem-services such as climate control and soil formation. It is because Korea suffers from drought and flood every year. Therefore, this study aims to understand objective numerical value of ecosystem-services value regarding ground water storage capacity of biotop classes based on relationship among precipitation, amount of evapotranspiration, and runoff of 7 regions of Chilgok-gun, Gyeongsangbuk-do and to convert the value into economic value. The study calculated ground water storage capacity based on relationship among precipitation, amount of evapotranspiration, and run off. Calculated amount of each capacity was 29.26 million ton($30.2mm/m^2$), 430.46 million ton($140.4mm/m^2$), 11.30 million ton($150.1.0mm/m^2$), 33 milion ton($3.0mm/m^2$). Economical value of ecosystem-service by each biotop classes appeared 4,128,800 thousand KRW ($21.32KRW/m^2$) for agricultural biotop, and 60,403,600 thousand KRW ($98.52KRW/m^2$) for forest biotop, 1,572,800 thousand KRW ($104.4KRW/m^2$) for grassland biotop, and 47,600 thousand KRW ($2.18KRW/m^2$) for bare ground biotop. The result of this study like above, it will be used as important evidentiary material to preserve natural resource effectively from various development business and policies that damages natural eco-system. Also, it is judged that ecosystem-service value by each land coverage will be used as important material for preparing legalistic institution such as establishing natural environment preservation plan, budget for alternative forest resource creation cost.

Community structure and distribution of ground beetles (Coleoptera: Carabidae) in Sobaeksan National Park, Korea

  • Hong, EuiJeong;Kim, Youngjin;Jeong, Jong-Chul;Kang, Seung-Ho;Jung, Jong-Kook;Suk, Sang-Wook
    • Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.125-131
    • /
    • 2017
  • The ground beetles collected during the investigation period were nine subfamilies, 24 genera, 51 species, and 3504 ground beetles. Species richness was high in Pterostichinae has 24 species (47%), Harpalinae nine species (17.6%), Carabinae six species (11.8%), and Lebiinae three species (5.9%). Overall dominant species was Synuchus agonus, and dominance index was 0.361. Synuchus agonus was investigated as the dominant species in both Namcheon Valley and Geumseon Valley. Regarding subdominant species, it was Synuchus nitidus (52 individuals, 12.6%) and Synuchus cycloderus (52 individuals, 12.6%) in the order in Namcheon Valley, and it was Pterostichus orientalis orientalis (660 individuals, 21.3%) and Pterostichus audax (378 individuals, 12.2%) in the order in Geumseon Valley. Total species diversity index of ground beetles in Sobaeksan National Park was 2.917. By area, the number of collected ground beetles was smaller in Namcheon Valley than in Geumseon Valley. Sobaeksan National Park is located at the boundary of northern and southern parts in Korea and is a very important place in terms of geography and climate. Sobaeksan has been designated as a national park, and its ecosystem is relatively preserved well. If continuous investigation of basic data for ground beetles is conducted through long-term monitoring, the data can be used as key data to research mutual relationship with organisms, effects by climate change, and ecosystem change depending on human activities.

A Model for Litter Decomposition of the Forest Ecosystem in South Korea (남한의 산림생태계에 있어서의 낙엽의 분해모델)

  • Park, Bong Kyu;In Sook Lee
    • The Korean Journal of Ecology
    • /
    • v.4 no.1_2
    • /
    • pp.38-51
    • /
    • 1981
  • The present investigation was estimated the effect of temperature, precipitatiion, and time on the decomposition of litters with litter bags of Pinus densiffora and Quercus mongolica at Gure where elevation in 50m, and at Nogodan where elevation in 1300m on Mt. Jiri. As the above results, decomposition model was proposed to relation of the environmental conditions. And was investigated the production and decomposition of litters from the stands of various forest communities in Kwangneung, Mt. Jiri and Mt. Halla. The results are as follows; The models for the decay of organic carbon (C) was as follows: $C=Coe^{-Kt}$ (limiting factor;time) $C=Coe^{-K'te}$ (limiting factor;tempedrature) $C=Coe^{-KnP}$ (limiting factor:precipitation) As observed in litter bag method, the decomposition rate of litter in Pinus densiflora was slower than that of Quercus mongolica. The higher elevation, the slower decomposition rate. The decomposition of litters at Gure where elevation in 50m was equally influenced by temperature and precipitation. But at Nogodan where elevation in 1300m was much inflenced by precipitation. The decay constant of litters was larger in hardwood forest than in coniferous forest. In the same species, the more elevatiion, the less decomposition constant. The time required for the decay of 50%, 95^, 99% of the accumulated litters in the forest floor were faster in hardwood forest than in coniferous forest. In the same species, the higher elevatiion, the longer time required.

  • PDF

Organic carbon distribution and cycling in the Quercus glauca forest at Gotjawal wetland, Jeju Island, Korea

  • Han, Young-Sub;Lee, Eung-Pill;Park, Jae-Hoon;Lee, Seung-Yeon;Lee, Soo-In;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.60-69
    • /
    • 2018
  • Background: This study was conducted from March 2011 to February 2013 in order to evaluate the ecosystem value by examining the organic carbon distribution and cycling in the Quercus glauca forest, evergreen oak community at Seonheul-Gotjawal, Jeju Island. Results: The amount of organic carbon distribution was $124.5ton\;C\;ha^{-1}$ in 2011 and $132.63ton\;C\;ha^{-1}$ in 2012 for aboveground biomass. And it was $31.13ton\;C\;ha^{-1}$ in 2011 and $33.16ton\;C\;ha^{-1}$ in 2012 for belowground biomass. In total, the amount of organic carbon distribution in plants was 155.63 and $165.79ton\;C\;ha^{-1}$ in 2011 and 2012, respectively. In 2011 and 2012 respectively, the amount of organic carbon distribution was 3.61 and $6.39ton\;C\;ha^{-1}$ in the forest floor and it was 78.89 and $100.71ton\;C\;ha^{-1}$ in the soil. As shown, most carbon was distributed in plants. Overall, the amount of organic carbon distribution of the Q. glauca forest was $238.13ton\;C\;ha^{-1}$ in 2011 and $272.89ton\;C\;ha^{-1}$ in 2012. In 2011, the amount of organic carbon fixed in plants through photosynthesis (NPP) was $14.22ton\;C\;ha^{-1}\;year^{-1}$ and the amount of carbon emission of soil respiration was $16.77ton\;C\;ha^{-1}\;year^{-1}$. The net ecosystem production (NEP) absorbed by the Q. glauca forest from the atmosphere was $5ton\;C\;ha^{-1}\;year^{-1}$. Conclusions: The carbon storage value based on such organic carbon distribution was estimated about $23.81mil\;won\;ha^{-1}$ in 2011 and $27.29mil\;won\;ha^{-1}$ in 2012, showing an annual increment of carbon storage value by $3.48mil\;won\;ha^{-1}$. The carbon absorption value based on such NEP was estimated about $500,000won\;ha^{-1}\;year^{-1}$.

Investigation on Forest Soil Dynamics at Onsan Industrial Estate and Mt. Mani by the Assay of Dehydrogenase Activity, Denitrifying and Sulfur-Reducing Bacteria (탈수소효소(脫水素酵素), 탈질균(脫窒菌) 및 황산환원균(黃酸還元菌)의 정량(定量)을 통(通)한 온산공단(溫山工團)과 마니산(摩尼山) 산림토양(山林土壤)의 동태(動態) 조사(調査))

  • Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.106-112
    • /
    • 1998
  • This study was conducted to figure out the relationships among soil chemical properties and bacterial biomass related to denitrification and sulfur-reducing and the activity of dehydrogenase, and ultimately to consider the usefulness of dehydrogenase activity as a tool for evaluating the dynamics of forest soil ecosystem. Four sites were selected for the collection of soil samples within two regions(Onsan industrial estate as a polluted region and Mt. Mani at Kanghwa island as a clean area) with two forest types (coniferous and deciduous stands). The soils of Mt. Mani showed higher amount of organic matter, total nitrogen and available phosphorus than those collected from Onsan industrial estate, which indicated that the soils were more beneficial for microbial growth than those of Onsan. The dehydrogenase activity was more sensitive than the denitrifying bacteria or sulfur-reducing bacteria since the activity was significantly different between the regions and season while the two bacterial biomass were not significantly different between the two regions. In addition, the dehydrogenase activity showed relatively high correlation coefficients with organic matter(r=0.53, p=0.004), total nitrogen(r=0.41, p=0.008) and C/Ava. P-ratio(r=-0.52, p=0.001), which was thought to be closely related with microbial activity. Thus, the dehydrogenase activity was thought to be a useful index of soil ecosystem dynamics with considering that the technique need to be applied with the same soil texture for the comparison of the activity as other researchers indicated.

  • PDF