• 제목/요약/키워드: Forest canopy density

검색결과 88건 처리시간 0.027초

REMOTELY SENSED INVESTIGATIONS OF FOREST CANOPY DENSITY DYNAMIC IN TROPIC COMBINE WITH LANDSAT AND FIELD MEASUREMENT DATA

  • Panta, Menaka;Kim, Hye-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.102-105
    • /
    • 2006
  • Forest canopy density is an essentially important for maintaining the diversify flora and fauna in the tropic. But, the natural and human disturbances have an influence over the inconsistency of forest canopy density. So, forest canopy density (FCD) has been threatened in the tropic since a decade. The objective of this study was to examine the dynamics change of the forest canopy density in tropical forest Chitwan, Nepal combine with field survey and remote sensing data. The field survey data of 2001 such as canopy cover percentage, dbh so on and some human disturbances were used. Similarly, Landsat TM 1988 and ETM+ 2001 have also used to predict the dynamic changes of the FCD over the period. Moreover, nonparametric Kruskal- Wallis test has performed for the validation of the results. Data analysis revealed that very few factors i.e. the number of trees, path, and fire had realized statistically significance at P=<0.05. Therefore we concluded that detail analysis could be needed incorporate with additional socioeconomic, climatic, biophysical and institutional factors for the better understanding of the forest canopy dynamic in particular location.

  • PDF

Study on the Relationship between the Forest Canopy Closure and Hyperspectral Signatures

  • Lin, Chinsu;Chang, Chein-I
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.72-74
    • /
    • 2003
  • Forest canopy density is an ideal representative of the forest habitat situations. It can directly or indirectly depict the canopy structure and gap size in the forestland, thus could be applied to assessment of wildlife’s diversit y. Since population survey of vegetation and wildlife diversities is a key issue for sustainable forest ecosystem management, many research efforts have been focused on forest canopy density using multispectral data in the last two decades. Unfortunately, prediction of canopy density using large scaling remote sensing data remains a challenging issue. Due to recent advances in hyperspectral image sensors hyperspectral imagery is now available for environmental monitoring. In this paper, we conduct experiments to monitor complicated environments of forestland that can be captured by using hyperspectral imagery and further be analyzed to test a prediction model of forest canopy density. The results show that 95% of canopy density could be well described by using 2 difference vegetation indices (DVIs), which are difference of blue and green reflectances rband_100-rband_150 and difference of 2 short wave infrared reflectancse rband_406-rband_410 With the wavelengths of band no. 100, 150, 406, and 410 specified by 462.39 nm, 534.40 nm, 918.22 nm and 924.41 nm respectively.

  • PDF

Spatial Relationship of Suburb, Road and River in respect to Forest Canopy Density Change Using GIS and RS

  • ;김계현
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 추계학술대회
    • /
    • pp.257-270
    • /
    • 2005
  • Many studies states that improperly uprising of infrastructure may cause leading the forest degradation and canopy reduction in many tropical forest of Asian countries. Other studies revealed that habitat destruction and fragmentation, edge effects, exotic species invasions, pollution are provoked by roads. Similarly, environmental effects of road construction in forests are problematic. Similarly, many researches have been indicated that roads have a far greater impact on forests than simply allowing greater access for human use. Moreover, people using river as means of transportation hence illegal logging and felling cause canopy depletion in many countries. Therefore, it is important to comprehend the study about spatial relation of road, river and suburb followed by temporal change of forest canopy phenomena. This study also tried to examine the effect of road, river and suburb in forest canopy density change of Terai forest of Nepal from you 1988 to 2001. So, Landsat TM88, 92 and 001 and FCD (Forest Canopy Density) mapper were used to perform the spatial .elation of canopy density change. ILWIS (Integrated Land and Water Information System) which is GIS software and compatible with remote sensing data was used to execute analysis and visualize the results. Study found that influence of distance to suburb and river had statistically significance influenced in canopy change. Though road also influenced canopy density much but didn't show a statistical relation. It can be concluded from this research that understanding of spatial relation of factors respect with canopy change is quite complex phenomena unless detail analysis of surrounding environment. Hence, it is better to carry out comprehensive analysis with other additional factors such as biophysical, anthropogenic, social, and institutional factors for proper approach of their effect on canopy change.

  • PDF

Spatio-temporal Dynamic Alteration of Forest Canopy Density based on Site Associated Factor: View from Tropical Forest of Nepal

  • Panta, Menaka;Kim, Kye-Hyun
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.313-323
    • /
    • 2006
  • Forest Canopy Density is a dynamic process mediated by various natural and anthropogenic factors. It can be changed over time and locations in the same forest type and landscape. However, human dimensions are considered as the primary force of landscape change and subsequent forest canopy loss in tropical regions of the world. Many studies have been indicated that roads have a far greater impact on forests than simply allowing access for human use. Similarly, rivers have been used as means of transportation, hence illegal logging and felling further deplete forest canopy density. The main objective of this study was to investigate the spatio-temporal dynamic alterations of Forest Canopy Density (FCD) across with site associated factors such as biophysical, physical and human interferences in tropical region of Nepal from 1988 to 2001. Landsat TM and ETM+ of 1988 and 2001 were used to assess the spatial and temporal dynamic alterations of FCD. This analysis revealed that distance to human settlements at P=<0.01, rivers, human interferences (path and fire) and species composition had a statistically significance at P=<0.05 level. However, other factors did not show any significant relation. So, we concluded that understanding of dynamic alterations of FCD with respect to factors was quite complex phenomena. Other surrounding environment could also playa significant role. A comprehensive analysis could be required to understand such complexities. Therefore, additional factors such as climatic, biophysical, social, and institutional with respect to spatio-temporal variability should be considered for the better understanding of canopy dynamic.

Forest Canopy Density Estimation Using Airborne Hyperspectral Data

  • Kwon, Tae-Hyub;Lee, Woo-Kyun;Kwak, Doo-Ahn;Park, Tae-Jin;Lee, Jong-Yoel;Hong, Suk-Young;Guishan, Cui;Kim, So-Ra
    • 대한원격탐사학회지
    • /
    • 제28권3호
    • /
    • pp.297-305
    • /
    • 2012
  • This study was performed to estimate forest canopy density (FCD) using airborne hyperspectral data acquired in the Independence Hall of Korea in central Korea. The airborne hyperspectral data were obtained with 36 narrow spectrum ranges of visible (Red, Green, and Blue) and near infrared spectrum (NIR) scope. The FCD mapping model developed by the International Tropical Timber Organization (ITTO) uses vegetation index (VI), bare soil index (BI), shadow index (SI), and temperature index (TI) for estimating FCD. Vegetation density (VD) was calculated through the integration of VI and BI, and scaled shadow index (SSI) was extracted from SI after the detection of black soil by TI. Finally, the FCD was estimated with VD and SSI. For the estimation of FCD in this study, VI and SI were extracted from hyperspectral data. But BI and TI were not available from hyperspectral data. Hyperspectral data makes the numerous combination of each band for calculating VI and SI. Therefore, the principal component analysis (PCA) was performed to find which band combinations are explanatory. This study showed that forest canopy density can be efficiently estimated with the help of airborne hyperspectral data. Our result showed that most forest area had 60 ~ 80% canopy density. On the other hand, there was little area of 10 ~ 20% canopy density forest.

LiDAR 데이터를 이용한 산림구조 분석 - 오산시 남촌동의 산림을 대상으로 - (Analysis of Forest Structure Using LiDAR Data - A Case Study of Forest in Namchon-Dong, Osan -)

  • 이동근;류지은;김은영;전성우
    • 환경영향평가
    • /
    • 제17권5호
    • /
    • pp.279-288
    • /
    • 2008
  • Vertical forest distribution is one of the important factors to understand various ecological mechanism such as succession, disturbance and environmental effects. LiDAR data provide information, both the horizontal and vertical distribution of forest structure. The laser scanner survey provided a point cloud, in which the x, y, and z coordinates of the points are known. The objectives of this study were 1) to analyze factors of forest structure such as individual tree isolation, tree height, canopy closure and tree density using LiDAR data and 2) to compare the forest structure between outer and interior forest. The paper conducted to extract the individual tree using watershed algorithm and to interpolate using the first return of LiDAR data for yielding digital surface model (DSM). The results of the study show characters of edge such as more isolated individual trees, higher density, lower canopy closure, and lower tree height than those of interior forest. LiDAR data is to be useful for analyzing of forest structure. Further study should be undertaken with species for more accurate results.

직경분포모형을 이용한 소나무림의 수관연료특성 예측: 산림시업지 임분과 비시업지 임분에서 (Estimation of Canopy Fuel Characteristics for Pinus densiflora Stands Using Diameter Distribution Models: Forest Managed Stands and Unmanaged Stands)

  • 이선주;김성용;이병두;이영진
    • 한국산림과학회지
    • /
    • 제107권4호
    • /
    • pp.412-421
    • /
    • 2018
  • 본 연구는 산림시업이 소나무임분의 수관연료특성 변화에 미치는 영향을 예측하고자 하였다. 본 연구에서는 국가산림자원자료 중 시업지 1,085 stands, 비시업지 349 stands의 표본점 자료를 분석에 이용하였으며, Weibull 함수를 사용하여 시간에 따른 임분생장과 수관연료특성에 대해 예측하였다. 산림시업유무에 따른 수관연료특성을 비교해본 결과 비시업지 임분이 시업지 임분에 비해 평균 수관연료량은 약 14% 높게 나타났으며, 연소가능한 수관연료밀도 또한 약 16% 높게 나타났다. Weibull 함수를 사용하여 임령 40년, 50년, 60년의 생장 예측과 수관연료특성 변화를 비교해본 결과, 시업지 임분은 시간이 지남에 따라 중경목, 대경목에 최대임목본수의 증가가 예측된 반면, 비시업지 임분은 소경목, 중경목에서 최대임목본수가 예측되었다. 비시업지 임분이 시업지 임분에 비해 수관연료량, 수관연료밀도의 증가량이 높게 나타나 수관화로의 확산 가능성이 높은 것으로 사료되었다.

Generation of DEM Data Under Forest Canopy Using Airborne Lidar

  • Woo Choong-Shik;Kim Tae-Guen;Shin Jung-Il;Lee Kyu-Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.512-514
    • /
    • 2005
  • Accurate DEM surface of forest floor is very important to extract any meaningful information regarding forest stand structure, such as tree heights, stand density, crown morphology, and biomass. In airborne lidar data processing, DEM data of forest floor is mostly generated by interpolating those elevation points obtained from last laser returns. In this study, we try to analyze the property of the last laser return under relatively dense forest canopy. Airborne laser data were obtained over the study area in relatively dense pine plantation forest. Two DEM data were generated by using all the points in the last laser returns and using only those points after removing non-ground points. From the preliminary analysis on these DEM data, we found that more than half of points among the last laser returns are actually hit from canopy, branches, and understory vegetation that should be removed before generating the surface DEM data.

  • PDF

우리나라 주요 침엽수종의 수관층 연료특성 평가 (Assessment of Canopy Fuel Characteristics for Five Major Coniferous Species in Korea)

  • 김성용;장미나;이병두;이영진
    • 한국산림과학회지
    • /
    • 제102권2호
    • /
    • pp.247-254
    • /
    • 2013
  • 본 연구의 목적은 우리나라 주요 침엽수종을 대상으로 수관층 연료특성을 비교 분석하여 수관화 확산 위험성을 평가하고자 하였다. 본 연구에서는 국립산림과학원에서 개발된 바이오매스 추정식과 제 5차 국가산림자원조사자료를 활용하였으며, 이를 통해 임분단위 수관연료량과 지하고를 추정할 수 있는 모델을 개발하였다. 연구 결과에 의하면 잣나무림의 평균 수관연료밀도는 0.34 kg/$m^3$으로 가장 높게 나타났으며, 강원지방소나무림 0.28 kg/$m^3$, 곰솔림 0.15 kg/$m^3$, 리기다소나무림 0.15 kg/$m^3$, 중부지방소나무림 0.12 kg/$m^3$, 일본잎갈나무림 0.09 kg/$m^3$ 순으로 나타났다. 임분단위 수관연료량 추정식 모형의 조정결정계수($R^2_{adj}$)는 0.6321~0.9950, 지하고 추정식 모형의 조정결정계수($R^2_{adj}$)는 0.6390~0.8536의 범위를 보였다.

숲가꾸기 사업이 소나무림의 수관연료특성에 미치는 영향 (Effects of Forest Tending Works on the Crown Fuel Characteristics of Pinus densiflora S. et Z. Stands in Korea)

  • 김성용;이병두;서연옥;장미나;이영진
    • 한국산림과학회지
    • /
    • 제100권3호
    • /
    • pp.359-366
    • /
    • 2011
  • 본 연구의 목적은 숲가꾸기 사업이 소나무림의 수관연료특성에 미치는 영향에 대하여 분석하고자 하였다. 연구대상지는 숲가꾸기 사업이 실시된 경북 영주지역 소나무림(Pinus densiflora)과 천연림 상태의 봉화지역 소나무림을 대상으로 조사하였으며, 각 지역마다 10본의 표본목을 벌채하여 수관층 연료특성을 비교 분석하였다. 영주지역의 수관층 수분함량은 103.6%, 봉화지역은 104.4%로 나타났으며, 총 수관층 연료에서 수관화 확산 시 연소될 수 있는 이용 가능한 연료의 비율은 영주지역 50.3%, 봉화지역 62.0%로 나타났다. 숲가꾸기 사업이 실시된 영주지역 소나무림의 수관연료밀도는 천연림 상태의 봉화지역 소나무림에 비해 평균 $0.11kg/m^3$ 낮았으며, 지하고는 평균 1.3 m 높은 것으로 나타났다. 따라서 숲가꾸기 사업이 실시된 영주지역 소나무림이 천연림 상태인 봉화지역 소나무림에 비해 산불 발생 시 수관화로의 전이 가능성이 매우 낮은 것으로 나타났다.