• Title/Summary/Keyword: Forest Soil

Search Result 2,521, Processing Time 0.031 seconds

Soil organic carbon variation in relation to land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia

  • Amanuel, Wondimagegn;Yimer, Fantaw;Karltun, Erik
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.128-138
    • /
    • 2018
  • Background: This study investigated the variation of soil organic carbon in four land cover types: natural and mixed forest, cultivated land, Eucalyptus plantation and open bush land. The study was conducted in the Birr watershed of the upper Blue Nile ('Abbay') river basin. Methods: The data was subjected to a two-way of ANOVA analysis using the general linear model (GLM) procedures of SAS. Pairwise comparison method was also used to assess the mean difference of the land uses and depth levels depending on soil properties. Total of 148 soil samples were collected from two depth layers: 0-10 and 10-20 cm. Results: The results showed that overall mean soil organic carbon stock was higher under natural and mixed forest land use compared with other land use types and at all depths ($29.62{\pm}1.95Mg\;C\;ha^{-1}$), which was 36.14, 28.36, and 27.63% more than in cultivated land, open bush land, and Eucalyptus plantation, respectively. This could be due to greater inputs of vegetation and reduced decomposition of organic matter. On the other hand, the lowest soil organic carbon stock under cultivated land could be due to reduced inputs of organic matter and frequent tillage which encouraged oxidation of organic matter. Conclusions: Hence, carbon concentrations and stocks under natural and mixed forest and Eucalyptus plantation were higher than other land use types suggesting that two management strategies for improving soil conditions in the watershed: to maintain and preserve the forest in order to maintain carbon storage in the future and to recover abandoned crop land and degraded lands by establishing tree plantations to avoid overharvesting in natural forests.

Soil CO2 Evolution and Nitrogen Availability on Abandoned Agricultural Fields at Mt. Kumdan (검단산 한계농지에서의 토양발생 CO2 및 질소 유효도)

  • Son, Yo-whan;Ban, Ji-yeon;Kim, Rae-Hyun;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.110-115
    • /
    • 2003
  • The iufluence of abandonment of agricultural fields on soil carbon and nitrogen dynamics is rarely addressed due to lack of appropriately paired sites. In this study, we identified three sites that have native forest and abandoned rice and crop fields at Mt. Kumdan near Seoul. Currently the vegetation of indigenous forest and the abandoned rice field is deciduous hardwood forest, while that of the abandoned crop field is deciduous shrub. We measured soil $CO_2$ evolution and inorganic N availability for the three sites from 25 July 2002 through 24 January 2003. Soil $CO_2$ evolution tracked seasonal soil temperature. Mean soil $CO_2$ evolution (g $CO_2$/$m^2$/hr) for the study period was 0.42 for the rice field to forest, 0.50 for the crop field to shrub, and 0.41 for the indigenous forest, respectively. Soil $CO_2$ evolution and soil temperature were not different among the sites; however, soil water content was significantly different. Soil water content had a very weak influence on soil $CO_2$ evolution. Inorganic resin N availability differed among the three sites and seemed to be related to soil moisture.

Estimation of Change in Soil Carbon Stock of Pinus densiflora Forests in Korea using KFSC Model under RCP 8.5 Climate Change Scenario (한국형 산림토양탄소모델(KFSC Model)을 이용한 RCP 8.5 기후변화 시나리오 하에서의 국내 소나무림 토양탄소 저장량 장기 변화 추정 연구)

  • Park, Chan-woo;Lee, Jongyeol;Yi, Myongjong;Kim, Choonsig;Park, Gwan Soo;Kim, Rae Hyun;Lee, Kyeong Hak;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.77-93
    • /
    • 2013
  • Global warming accelerates both carbon (C) input through increased forest productivity and heterotrophic C emission in forest soils, and a future trend in soil C dynamics is uncertain. In this study, the Korean forest soil carbon model (KFSC model) was applied to 1,467,458 ha of Pinus densiflora forests in Korea to predict future C dynamics under RCP 8.5 climate change scenario (RCP scenario). Korea was divided into 16 administrative regions, and P. densiflora forests in each region were classified into six classes by their stand ages : 1 to 10 (I), 11 to 20 (II), 21 to 30 (III), 31 to 40 (IV), 41 to 50 (V), and 51 to 80-year-old (VI+). The forest of each stand age class in a region was treated as a simulation unit, then future net primary production (NPP), soil respiration (SR) and forest soil C stock of each simulation unit were predicted from the 2012 to 2100 under RCP scenario and constant temperature scenario (CT scenario). As a result, NPP decreased in the initial stage of simulation then increased while SR increased in the initial stage of simulation then decreased in both scenarios. The mean NPP and SR under RCP scenario was 20.2% and 20.0% higher than that under CT scenario, respectively. When the initial age class was I, IV, V or VI+, predicted soil C stock under CT scenario was higher than that under RCP scenario, however, the countertrend was observed when the initial age class was II or III. Also, forests having a lower site index showed a lower soil C stock. It suggested that the impact of temperature on NPP was higher when the forests grow faster. Soil C stock under RCP scenario decreased at the end of simulation, and it might be derived from exponentially increased SR under the higher temperature condition. Thus, the difference in soil C stock under two scenarios will be much larger in the further future.

Basic study on the biological and physicochemical properties of burnt forest soil for the ecological restoration by organic waste (유기성폐자원을 이용한 산불토양의 생태학적 복원을 위한 토양의 생물학적, 물리화학적 기초특성연구)

  • Jung, Young-Ryul;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 2005
  • Forest soils were analyzed on their biological and physicochemical properties for the ecological restoration of burnt forest soil using organic wastes and proper microorganisms. Three kinds of soil samples were collected from undamaged soil(US), naturally restoring soil(NS) and artificially restoring soil(AS). All soil samples were sandy soil and acidic soil, ranged pH 5.34~5.78. Moisture content was higher in the soil of NS region. And the others were similar. Total organic matter and soluble sugar were higher at the surface, generally. Heterotrophic soil microbes were abundant at the surface soil of NS and subsoil of AS. Dehydrogenase, cellulase and phosphatase activities were higher at the NS soil. Especially, Dehydrogenase activity as primary index of soil microbial process showed high correlationship with moisture content(r=0.90, P < 0.05).

  • PDF

The effect of soil heterogeneity and container length on the growth of Populus euramericana in a greenhouse study

  • Rahman, Afroja;Meng, Loth;Han, Si Ho;Seo, Gi Chun;Jung, Mun Ho;Park, Byung Bae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Soil characteristics along with various container lengths have an important role in the early survival rate and growth of seedlings by influencing the seedling quality. This experiment was conducted to investigate the effect of container length and different soil mixtures on the growth of poplar in a greenhouse. Two types of soil, homogeneous vs. heterogeneous, were used along with two container lengths (30 vs. 60 cm). The heterogeneous soil was made by dividing 50% vermiculite from a mixture of 25% vermicompost and 25% nursery soil in volume. For the homogeneous soil, the above three soil types were mixed together. Populus euramericana clone cuttings were planted in late April, and then, the growth height, root collar diameter (RCD) and biomass were measured in August. The height of the poplar was not significantly affected by container length and soil type, but the RCD was significantly affected by soil type. Leaf and root biomass was higher at the long container than at the short container for both soil treatments, but stem biomass was lower at the heterogeneous soil than at the homogeneous soil treatment. Root to shoot biomass ratio was higher at the heterogeneous soil treatment than at the homogeneous soil treatment by 12%. In conclusion, heterogeneous soil along with a long container is suitable to increase the carbon allocation into the root.

The Effects of Site Environmental Factors on Estimation of Site Index Function for Chamaecyparis obtusa Endlicher Stands (입지환경인자를 바탕으로 한 편백의 지위지수 추정에 관한 연구)

  • Kim, Dae-Hyun;Kim, Eui-Gyeong;Lee, Sung-Gi;Chung, Young-Gyo;Jeong, Jin-Hyun
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.891-898
    • /
    • 2008
  • This study was conducted to develop the effects of site environmental factors on estimation of site index function for Chamaecyparis obtusa Endlicher stands. We derived nonlinear growth equation and the draw site index curves by applying this estimated equation. This study with Chapman-Richards function showed significant P-value which was less then 0.0001 and $R^2$ value 0.5947. This study was conducted to develop the feasible site index equation of Chamaecyparis obtusa Endlicher. For the table, the data of 82 sample areas that were thought to be without errors among the data of Chamaecyparis obtusa Endlicher sample area located on the value-oriented forest location chart were used and estimated. After analyzing the quantification method I based on 13 environmental factors to develop the score table for the site-index estimation of Chamaecyparis obtusa Endlicher, $R^2$ value of the model was 0.7555. It has been analyzed that the scope value of Soil moisture in horizon A was 7.5045, that of total soil depth was 6.3896, that of topography was 5.3471, that of slope was 4.7000 and that of aspect was 3.2038. After analyzing the partial correlation to examine the factors that affected most the site-index of Chamaecyparis obtusa Endlicher, it has been noted that the partial correlation of climatic zone was 0.4987, which was highest, and it was followed by Soil moisture in horizon A (0.4592), slope (0.4537), topography (0.3299) and total soil depth (0.1035). As a result of conducting the significance test for partial correlation, it has been found that topography, climatic zone, parent rock, slope, altitude, aspect, Soil moisture in horizon A, soil hardness in horizon A and total soil depth were recognized significant with 1% of significance level and sedimentary type and soil texture in horizon A were recognized significant with 5% of significance level.

Soil Properties and Growth Characteristics by Production Periods of Zoysiagrass Sods (뗏장 재배기간에 따른 Zoysiagrass의 생육과 토양의 특성)

  • Han, Jeong-Ji;Lee, Kwang-Soo;Choi, Su-Min;Park, Yong-Bae;Bae, Eun-Ji
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.262-267
    • /
    • 2015
  • In order to establish the efficient sod production and soil management, there is a need to perform research on the growing condition of zoysiagrass on soil environments. With an attempt to identify the growth of zoysiagrass and the chemical characteristics of soil according to different growing seasons, this study was carried out in separate areas where zoysiagrass has been grown for 1 year, 10 years, 20 years, and 30 years. As the growing season became longer, bulk density of the soil was increased, porosity and gaseous phase were decreased. The level of pH was highest in the area where zoysiagrass has been produced for 30 years, whereas total nitrogen and organic matters were found to be the greatest in where zoysiagrass has been produced for 1 year. Accordingly, the chemical properties of soil were deteriorated more in the area with continuous cropping than in the area with 1 year of cropping. As the time period of producing zoysiagrass became longer, growth of shoot and root were decreased. In this study, it is required to produce zoysiagrass through soil improvement in areas that have been used for production for over 10 years.

Study on Application of Topographic Position Index for Prediction of the Landslide Occurrence (산사태 발생지 예측을 위한 Topographic Position Index의 적용성 연구)

  • Woo, Choong-Shik;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • The objective of the study is 10 know the relation of landslide occurrence with using TPI (Topographic Position Index) in the Pyungchang County. Total 659 landslide scars were detected from aerial photographs. To analyze TPI, 100m SN (Small-Neighborhood) TPI map, 500m LN (Large-Neighborhood) TPI map, and slope map were generated from the DEM (Digital Elevation Model) data which are made from 1 : 5,000 digital topographic map. 10 classes clustered by regular condition after overlapping each TPI maps and slope map. Through this process, we could make landform classification map. Because it is only to classify landform, 7 classes were finally regrouped by the slope angle information of landslide occurrence detected from aerial photography analysis. The accuracy of reclassified map is about 46%.

Differences of Nitrogen Mineralization in Larix decidua, Pinus strobus and Thuja occidentalis Plantations of the Kwangeneung Experimental Forest, Kyonggi Province (경기도 광릉시험림의 구주낙엽송, 스트로브잣나무, 서양측백 조림지 토양내 질소 무기화 비교)

  • Son, Yowhan;Im-Kyun Lee;Jung-Tae Kim;Sang-Eun Lee
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.385-395
    • /
    • 1995
  • Species effects on soil nitrogen mineralization and nitrification in the top 15 cm of soil were evaluated using the buried-bag incubation method in three coniferous plantations in the Kwangneung Experimental Forest, Kyonggi Province. The plantations were established on a similar soil in 1927, and included Larix decidua, Pinus strobus, and Thuja occidentalis. Ten soil samples within each plantation were taken during an entire growing season (May 2~Oct. 30, 1994). Mean daily nitrogen mineralization rates during 45-day in situ soil incubations were significantly different among species and incubation dates. Growing season nitrogen mineralization also differed significantly among species and ranged from 47.7 mg N/kg soil for Larix decidua to 21.5 ma N/kg soil for Thuja occidentalis. Growing season nitrification differed significantly among species and comprised from 93% to 100% of the total growing season nitrogen mineralized. We speculated that organic matter contents and quality might control nitrogen mineralization and nitrification in these soils.

  • PDF

Physicochemical Properties of Soil in Pine (Pinus densiflora for. erecta Uyeki) Forests (금강형 소나무림에 있어서 토양의 이화학적 성질)

  • Joo, Sung-Hyun;Jung, Sung-Cheol
    • Current Research on Agriculture and Life Sciences
    • /
    • v.19
    • /
    • pp.31-37
    • /
    • 2001
  • Uyeki(1928) classified Pinus densiflora into six ecotypes(Northeastem type, Middle-southern flat type, middle-southern upland type, Wibong type, Ankang type, and Geumgang type) based on the pine tree type. The bark color of Geumgang type was ash-brown color on the lower parts of stem and yellowed color on the upper parts of stem. We investigated the physicochemical properties of soil forests to obtain basic data for preservation of exellent pine (Pinus densiflora for. erecta Uyeki). The results were as follows; The soil texture of the Pinus densiflora for. erecta Uyeki forests were showed nearly as sandy loam, that is, sand, silt and clay were consisted of 72%, 15% and 13%, respectively. Soil acidity(pH 4.6) was lower than Korea average forest soil acidity(pH 5.2). The average contents of available phosphate was 11.7ppm at Sokwang-ri, 26.8ppm at Mt. Eungbong, 24.2ppm at Mt. Kumma. It was the lowest at Uljin(4.6ppm). The contents of carbon was 6.2% at Mt. Chungok, 6.1% at Mt. Eungbong. This value was more than average of Korea forest soil.

  • PDF