• Title/Summary/Keyword: Forest Soil

Search Result 2,521, Processing Time 0.027 seconds

Patterns of Utilizing Sole Carbon Source by Soil Microbes in a Forest Soil (토양 세균 군집의 유일탄소원 이용에 의한 지문분석)

  • 송인근;최영길;안영범;신규철;조홍범
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • This study was carried out utilzing ability of sole carbon sources in soil microbial communities used by Biolog GN microplate. Cluster analysis showed that soil microbial cornmuties were categorized into three groups as forest, non-forest soil and naked soil of microbial group. Soil microbial commutites in a forest soil of Qirercus mongoIica was divided into another group microbial communites in Qirercus dendata vegetation soil and Pinus dnzsqlora vegetation soil by Multidimensional scaling(MDS). Generally, sole carbon utilzing abilties were higher in order of polymer, amino acids and carboxylic acids, but it was lower in amides substrates carbon group. From the result: it was supposed that metabolic diversity of microbial communities was corresponded to vegetation succession.

  • PDF

Budget and distribution of organic carbon in Quercus serrata Thunb. ex Murray forest in Mt. Worak

  • Lee, Seung-Hyuk;Jang, Rae-Ha;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.425-436
    • /
    • 2015
  • The carbon cycle came into the spotlight due to the climate change and forests are well-known for their capacity to store carbon amongst other terrestrial ecosystems. The annual organic carbon of litter production, forest floor litter layer, soil, aboveground and belowground part of plant, standing biomass, net primary production, uptake of organic carbon, soil respiration, etc. were measured in Mt. Worak in order to understand the production and carbon budget of Quercus serrata forest that are widely spread in the central and southern part of the Korean Peninsula. The total amount of organic carbon of Q. serrata forest during the study period (2010-2013) was 130.745 ton C ha-1. The aboveground part of plant, belowground part of plant, forest floor litter layer, and organic carbon in soil was 50.041, 12.510, 4.075, and 64.119 ton C ha-1, respectively. The total average of carbon fixation in plants from photosynthesis was 4.935 ton C ha-1 yr-1 and organic carbon released from soil respiration to microbial respiration was 3.972 ton C ha-1 yr-1. As a result, the net ecosystem production of Q. serrata forest estimated from carbon fixation and soil respiration was 0.963 ton C ha-1 yr-1. Therefore, it seems that Q. serrata forest can act as a sink that absorbs carbon from the atmosphere. The carbon uptake of Q. serrata forest was highest in stem of the plant and the research site had young forest which had many trees with small diameter at breast height (DBH). Consequentially, it seems that active matter production and vigorous carbon dioxide assimilation occurred in Q. serrata forest and these results have proven to be effective for Q. serrata forest to play a role as carbon storage and NEP.

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.

Riparian forest and environment variables relationships, Chichibu mountains, central, Japan (일본 Chichibu산지 계반림의 입지환경)

  • Ann, Seong-Won
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • In most mountainous parts of the temperate zone of Japan along the Pacific Ocean, some climatic climax forests, whose main dominant species is Fagus crenate, F. japonica or Quercus mongolica var. grosseserrata, are distributed. In the riparian regions of the zone, however, there appear summer green forests composed of the different species from the climatic climax forests. Climate plays an important role in determining the overall distribution of vegetation, but some environmental factors, i.e., topography, soil type, soil moisture content, etc. have a great influence on vegetation formation. Riparian forests seem to be controlled by various geomorphologic disturbances, such as landslide, soil erosion and accumulation. The study aims to present the relationships among vegetation, soils and landforms in the process of determining riparian forests dominated by Fraxinus platypoda and Pterocarya rhoifolia establishment in the mountainous region of central Japan. The study area extends an area of 302 ha with a range of elevation between 925 m and 1,681 m at the Chichibu mountains. The landforms were corditied at sampling grids (25 $\times$ 25 m, n = 4,843) using a hierarchical system, and a brief description of the forest soil classification was also given. The mutual relationship analysis indicated that forest soils and landforms play a significant role in determining the geomorphological process of riparian forest, and shaping the ultimate pattern of vegetation. At the study area, riparian forests were mainly found on the $B_E$ forest soil type and steep slopes ( > 30$^{\circ}$) at convex slopes along the streams. On the other hand, the direction of slopes did not have a significant impact on the establishment of the riparian forests. A mosaic of patchy distribution of those riparian forests on the slightly wetter $B_E$ forest soil type was one of the characteristic features of the study area. This particular soil which contained large talus gravels was found on the land formed by erosion and deposition of landslide.

Change in Community Composition and Soil Carbon Stock Along Transitional Boundary in a Sub-Tropical Forest of Garhwal Himalaya

  • Kumar, Munesh;Kumar, Manish;Saleem, Sajid;Prasad, Sunil;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.194-199
    • /
    • 2013
  • The aim of the present study was to assess the effect of transitional boundary on community composition and soil carbon stock. Five vegetation types were recognized horizontally along the transitional strip based on the dominance of tree species i.e., Pure Anogeissus latifolia forest (P.AL), mixed Pinus roxburghii and Lannea coromandelica forest (M.PR&LC), pure Pinus roxburghii forest (P.PR), mixed Pinus roxburghii and Lannea coromandelica (M.PR&LC) and pure Anogeissus latifolia forest (P.AL). The results revealed that Anogeissus latifolia was reported dominant tree in the outer transitional boundaries of the forest, which reduced dominance of trees towards middle where Pinus roxburghii was found dominant. The soil carbon stock was reported higher in the Anogeissus latifolia dominant forest and reduced with the dominance of Pinus roxburghii in the middle site. Both the species are growing close to one another and competing for survival, but the aggressive nature of Anogeissus latifolia particular in this region may change new growth of Pinus roxburghii and will enhance soil carbon stock. But high anthropogenic pressure on Anogeissus latifolia tree species could be limited chance to further its flourish.

Effects of Biomaterials Mixed with Artificial Soil on Seedling Quality of Fraxinus Rhynchophylla in a Containerized Production System

  • Dao, Huong Thi Thuy;Youn, Woo Bin;Han, Si Ho;Seo, Jeong Min;Aung, Aung;An, Ji Young;Park, Byung Bae
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • The composition of artificial soil in a containerized seedling production plays an important role in seedling quality as well as environmental issues. We investigated the effects of different types of biomaterials and mixed ratio with artificial soil on the growth of Fraxinus rhynchophylla seedlings. Soil medium was supplemented with 3 levels (0%, 10%, 20%) of pine bark, mushroom sawdust and rice husk. Root collar diameter (RCD), height growth, and biomass have significantly increased when rice husk was applied. Compared with the control, RCD and height growth showed highest in 20% rice husk treatment with an increase of 5.7% and 17.6%, respectively. In contrast, the treatments of pine bark and mushroom sawdust showed lower results in growth parameters (RCD, height growth, and total biomass) than control. Seedling quality index was also highest at the 20% rice husk treatment, but there was not statistically different among treatments. Our results suggested rice husk can be substituted up to 20% of substrates for containerized F. rhynchophylla seedling production system.

The Effect of Soil Acidification on the Distribution of Nutrients and Heavy metals in Forest Ecosystem near Ulsan Industrial Estate (울산(蔚山) 공단주변(工團周邊) 산림토양(山林土壤)의 산성화(酸性化)가 산림생태계(山林生態系)의 양료(養料)와 중금속(重金屬) 분포(分布)에 미치는 영향(影響))

  • Lee, Seung Woo;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.286-298
    • /
    • 1995
  • This study was carried out to investigate the effect of forest soil acidification on the distribution of exchangeable cations($Ca^{2+}$, $Mg^{2+}$, $Al^{3+}$) and heavy metals(Cu, Zn, Mn, Pb, Cd) in soil, and to understand the relation of the soil chemical properties and the distribution of nutrients and hear metals in fine root and foliage. The results through survey on the long - term change of soil pH and the contents of nutrient and heavy metal in soil, fine root and foliage by 2 sites near Ulsan - Onsan industrial estate and 2 sites in limited development district are summarized as follows : 1. The average forest soil pH(A horizon) in Ulsan had been proceeded down to 3.73 in deciduous forest and 3.86 in coniferous forest in 1994 from 4.45 and 4.78 in 1987, respectively, which indicated serious soil acidification. As comparing soil pH among sites, Dongcheon coniferous forest(pH 4.57) in limited development district showed the highest values and Dangwol deciduous forest(pH 3.19) near Onsan industrial estate showed the lowest values in 1994. 2. Contents of exchangeable calcium in forest soils of limited development district where showed much higher soil pH than industrial estate were 3.5 times more in deciduous forest soil and 11 times more in coniferous forest soil than in industrial estate, and contents of exchangeable magnesium were also 4.5 and 5 times more in limited development district than in industrial estate, respectively. However contents of exchangeable aluminium which had been supposed more in forest soil of industrial estate were more in limited development district. 3. Contents of calcium and magnesium in fine root of deciduous trees(A hirsuta. Q. acutissima) were 3.6 and 1.7 times more in limited development district than in industrial estate, respectively, and those of coniferous trees(P. rigida, P. thunbergii) were 4.6 and 1.5 times more in Limited development district than in industrial estate, respectively. Also contents of calcium and magnesium in foliage of deciduous trees were 1.1 and 2.2 times more in limited development district than in industrial estate, respectively, and those of coniferous trees were 1.8 and 3.3 times more in limited development district, respectively. And contents of aluminium in fine root and foliage were nearly as same as in soil. 4. Ca/Al molar ratios in soil and fine root, which could be related with the dgree of soil acidification and Al toxicity on trees, were Less than 1 in all sites except Dongcheon, suggesting that the soil and fine root in the sites have high sensitivity to soil acidification and the decrease in nutrient uptake and root enlargement. The Ca/Al molar ratios in soil and fine root in coniferous forest were highly correlated with the soil pH one another. 5. Contents of Cu, Zn and Pb in soil, fine root and foliage were more in industrial estate than in limited development district in both deciduous and coniferous forests, however, oppositely contents of Mn and Cd in soil were more in limited development district than in industrial estate.

  • PDF

Some DTPA Extractable Micronutrients in Different Hill Forest Soils of Chittagong Region, Bangladesh

  • Akhtaruzzaman, Md.;Osman, K.T.;Sirajul Haque, S.M.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • DTPA (Diethelene-triamine pentaacetic acid) extractable micronutrients of surface soil samples from six different locations of Cox's Bazar and Chittagong districts were studied. All the soils under study were sufficient in DTPA extractable Fe, Mn and Cu contents. The available Zn contents in soils of Dulhazara, Chengchhari and Faissakhali under study were also above the critical limit while soils at Fulchhari, Hasnabad and CU were deficient in available Zn. The study also showed that DTPA extractable Fe content had the significant and positive relationships with clay and soil organic carbon. On the hand, negative and significant relationship was observed between extractable Mn and soil pH while DTPA extractable Zn and Cu were positively and significantly correlated with soil organic carbon of the studied area.

Analysis on the Plant and Site Characteristics for the Restoration of Sangrim Woodlands in Hamyang-Gun, Korea II (함양 상림 복원을 위한 식생 및 입지특성 분석 II)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.173-184
    • /
    • 2010
  • This study was conducted to establish a management plan for the Sangrim Woodlands restoration by analyzing the vegetation survey and the site characteristics of the Sangrim Woodlands Natural Monument (Natural Monument 154) in Hamyang-Gun, Gyoungsangnam-Do, Korea. According to the vegetation analysis, the species diversity by the location of Sangrim was higher near forest (1.000) than near urban (0.358) areas. Although forest occupied 53% of the Sangrim woodlands area, it is still insufficient, requiring to transform arable land, lawn, or house areas to the forest within the woodlands. Soil bulk density was increased in access areas frequently used by public, while it was decreased in closed areas. Soil hardness at 0-10 cm soil depth was generally improved in the closed areas, while became worse in the public access areas compared with the soil hardness in 2004.

Impacts of Close-to-nature Management Technology on the Korean Pine Soil Chemical Properties in Northeast China

  • Wu, Yao;Qin, Kailun;Zhang, Jinfu;Li, Fengri
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.300-306
    • /
    • 2013
  • Based on the guiding ideology of "Close-to-nature forestry", the soil chemical properties of Korean pine (Pinus koraiensis) plantation forest which was early done by canopy gap control were analyzed of Liangshui nature reserve in northeastern China. The results indicated that the nurture of forestry crevice diaphanous tended to improve the soil nutrient contents and significant differences of soil nutrients existed among different levels of soil for the same forest type of Korean pine. At 0< $H{\leq}20$ cm layer, the content of available nitrogen, available phosphorus, available potassium, total nitrogen and total phosphorus in artificial pure Korean pine forest are 640.28 $mg{\cdot}kg^{-1}$, 7.54 $mg{\cdot}kg^{-1}$, 275.91 $mg{\cdot}kg^{-1}$, 1.114% and 0.075%, they all higher than the other kinds of forests and for average 1.1 times, 1.4 times, 1.3 times, 1.6 times and 1.2 times. From the layer of $0<H{\leq}20$ cm to 20 cm < $H{\leq}40$ cm, soil nutrient indicators showed various degrees of decreasing in which organic matter had the greatest decline, decreasing by 170.64% while PH had the lowest decline, decreasing by 4.66%.