• Title/Summary/Keyword: Forest Carbon Stocks

Search Result 76, Processing Time 0.033 seconds

Estimation of Forest Carbon Stock in South Korea Using Machine Learning with High-Resolution Remote Sensing Data (고해상도 원격탐사 자료와 기계학습을 이용한 한국 산림의 탄소 저장량 산정)

  • Jaewon Shin;Sujong Jeong;Dongyeong Chang
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.61-72
    • /
    • 2023
  • Accurate estimation of forest carbon stocks is important in establishing greenhouse gas reduction plans. In this study, we estimate the spatial distribution of forest carbon stocks using machine learning techniques based on high-resolution remote sensing data and detailed field survey data. The high-resolution remote sensing data used in this study are Landsat indices (EVI, NDVI, NDII) for monitoring vegetation vitality and Shuttle Radar Topography Mission (SRTM) data for describing topography. We also used the forest growing stock data from the National Forest Inventory (NFI) for estimating forest biomass. Based on these data, we built a model based on machine learning methods and optimized for Korean forest types to calculate the forest carbon stocks per grid unit. With the newly developed estimation model, we created forest carbon stocks maps and estimated the forest carbon stocks in South Korea. As a result, forest carbon stock in South Korea was estimated to be 432,214,520 tC in 2020. Furthermore, we estimated the loss of forest carbon stocks due to the Donghae-Uljin forest fire in 2022 using the forest carbon stock map in this study. The surrounding forest destroyed around the fire area was estimated to be about 24,835 ha and the loss of forest carbon stocks was estimated to be 1,396,457 tC. Our model serves as a tool to estimate spatially distributed local forest carbon stocks and facilitates accounting of real-time changes in the carbon balance as well as managing the LULUCF part of greenhouse gas inventories.

Analysis of Forest Types and Estimation of the Forest Carbon Stocks Using Landsat Satellite Images in Chungcheongnam-do, South Korea (Landsat 위성영상을 이용한 충청남도 임상 분석 및 산림 탄소저장량 추정)

  • Kim, Sung Hoon;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.2
    • /
    • pp.206-216
    • /
    • 2014
  • In this study, forest types in Chungheongnam-do were analyzed using Landsat satellite images and digital forest type map as a means to estimate forest carbon stocks. NDVI and Tasseled Cap, ISODATA, and supervised classification among others were used to analyze the forest types. The forest carbon stocks of Chungcheongnam-do were estimated utilizing forest statistical data derived from the classified results. The results indicate that the analysis of forest types through supervised classification yielded the highest overall accuracy in analyzing forest types using satellite images. Coniferous forests(49.3%) accounted for the highest proportion in all the forest types of Chungcheongnam-do, followed by deciduous forests(28.0%) and mixed forests(22.7%). The results of a comparative analysis between forest carbon stocks estimates made using the modified digital forest type map and other estimation methods showed that the method using Tasseled Cap and unsupervised classification yielded the most similar forest carbon stock estimates. The most significant difference, though, was made when only the digital forest type map was used. It is expected that if carbon stocks are estimated by integrating satellite images and digital forest type maps in the future, more accurate results can be derived in estimating forest carbon stocks at a national level.

  • PDF

The Carbon Stock Change of Vegetation and Soil in the Forest Due to Forestry Projects (산림 사업에 의한 산림 식생 및 토양 탄소 변화)

  • Heon Mo Jeong;Inyoung Jang;Sanghak Han;Soyeon Cho;Chul-Hyun Choi;Yeon Ji Lee;Sung-Ryong Kang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.330-338
    • /
    • 2023
  • To investigate the impact of forestry projects on the carbon stocks of forests, we estimated the carbon stock change of above-ground and soil before and after forestry projects using forest type maps, forestry project information, and soil information. First, we selected six map sheet with large areas and declining age class based on forest type map information. Then, we collected data such as forest type maps, growth coefficients, soil organic matter content, and soil bulk density of the estimated areas to calculate forest carbon storage. As a result, forest carbon stocks decreased by about 34.1~70.0% after forestry projects at all sites. In addition, compared to reference studies, domestic forest soils store less carbon than the above-ground, so it is judged that domestic forest soils have great potential to store more carbon and strategies to increase carbon storage are needed. It was estimated that the amount of carbon stored before forestry projects is about 1.5 times more than after forestry projects. The study estimated that it takes about 27 years for forests to recover to their pre-thinning carbon stocks following forestry projects. Since it takes a long time for forests to recover to their original carbon stocks once their carbon stocks are reduced by physical damage, it is necessary to plan to preserve them as much as possible, especially for highly conservative forests, so that they can maintain their carbon storage function.

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Estimation of Carbon Stock by Development of Stem Taper Equation and Carbon Emission Factors for Quercus serrata (수간곡선식 개발과 국가탄소배출계수를 이용한 졸참나무의 탄소저장량 추정)

  • Kang, Jin-Taek;Son, Yeong-Mo;Jeon, Ju-Hyeon;Yoo, Byung-Oh
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • This study was conducted to estimate carbon stocks of Quercus serrata with drawing volume of trees in each tree height and DBH applying the suitable stem taper equation and tree specific carbon emission factors, using collected growth data from all over the country. Information on distribution area, tree number per hectare, tree volume and volume stocks were obtained from the $5^{th}$ National Forest Inventory (2006~2010), and method provided in IPCC GPG was applied to estimate carbon storage and removals. Performance in predicting stem diameter at a specific point along a stem in Quercus serrata by applying Kozak's model,$d=a_1DBH^{a_2}a_3^{DBH}X^{b_1Z^2+b_2ln(Z+0.001)+b_3{\sqrt{Z}}+b_4e^Z+b_5({\frac{DBH}{H}})}$, which is well known equation in stem taper estimation, was evaluated with validations statistics, Fitness Index, Bias and Standard Error of Bias. Consequently, Kozak's model turned out to be suitable in all validations statistics. Stem volume tables of Quercus serrata were derived by applying Kozak's model and carbon stock tables in each tree height and DBH were developed with country-specific carbon emission factors ($WD=0.65t/m^3$, BEF=1.55, R=0.43) of Quercus serrata. As a result of carbon stock analysis by age class in Quercus serrata, carbon stocks of IV age class (11,358 ha, 36.5%) and V age class (10,432; 33.5%) which take up the largest area in distribution of age class were 957,000 tC and 1,312,000 tC. Total carbon stocks of Quercus serrata were 3,191,000 tC which is 3% compared with total percentage of broad-leaved forest and carbon sequestration per hectare(ha) was 3.8 tC/ha/yr, $13.9tCO_2/ha/yr$, respectively.

Changes in Carbon Stocks of Coarse Woody Debris in National Forest Inventories: Focus on Gangwon Province (국가산림자원조사 자료를 활용한 고사목의 탄소저장량 변화: 강원도를 대상으로)

  • Moon, Ga Hyun;Yim, Jong Su
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.233-243
    • /
    • 2021
  • Considering worldwide efforts to mitigate repercussions of climate change, the South Korean government has declared to reach net zero by 2050 to achieve a carbon-neutral sustainable society. For full implementation of NDCs, the government has actively reflected its forestry sector into these strategies. Since coarse woody debris (CWD) in forests represents an enduring carbon storage, it is of particular significance to determine characteristics of changes in carbon stocks of CWD by utilizing data on dead trees monitored in permanent sample plots within national forest inventories (NFIs). In this study, therefore, both occurrence and carbon stocks of CWD were estimated in such plots using data on CWD from the 5th, 6th, and 7th NFIs. Subsequently, characteristics of changes in carbon stocks over time were analyzed. Based on the analysis of 2,021 plots available for monitoring in each NFI of Gangwon Province, the volume of CWD (m3 ha-1) was found to be 4.71 in the 5th NFI and 4.09 in the 6th NFI. However, the volume of CWD declined to 3.09 in the 7th NFI. Moreover, the annual carbon stocks of CWD (ton C ha-1) were estimated to be 0.67 in 2009, 0.64 in 2014, and 0.41 in 2019, showing a downward trend over time. This study provides a basis for future research to investigate long-term changes and estimate carbon stocks of CWD in South Korea forests.

Assessment of Coarse Woody Debris in Gallery Forest in the Bombo-Lumene Reserve (Democratic Republic of Congo)

  • Rusaati, Butoto Imani wa;Joo, Sung-Hyun;Yun, Gi-Yun;Park, Joowon;Cephas, Masumbuko Ndabaga;Kang, Jun-Won
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.205-211
    • /
    • 2019
  • The objective of this research was to assess the amount of carbon stock of coarse woody debris (CWD) in Bombo-Lumene Reserve. Data on lying CWD was collected on 35 circular sampling plots using Line Intersect Sampling (LIS) method. A total of 230 samples CWD (${\geq}10cm$ diameter) were inventoried. The mean carbon stocks of CWD was $29.48Mg\;C\;ha^{-1}$, ranging from 4.32 to $73.54Mg\;C\;ha^{-1}$. The CWD carbon stocks displayed a wide range of variation in decay states. The allocation of CWD among the decay class of all the CWD samples reveals that the most important classes were class 1 and class 3 with 323.66 and $321.96Mg\;C\;ha^{-1}$, followed by class 4 with 264.56 and the last one was class 2 with $121.72Mg\;C\;ha^{-1}$. The results suggested that the dead wood component is important in carbon sequestration and should be taken into consideration for quantification of carbon stocks not only in Bombo-Lumene Reserve, but in all forest ecosystems in the Democratic Republic of Congo.

Comparison of Three Kinds of Methods on Estimation of Forest Carbon Stocks Distribution Using National Forest Inventory DB and Forest Type Map (국가산림자원조사 DB와 임상도를 이용한 산림탄소저장량 공간분포 추정방법 비교)

  • Kim, Kyoung-Min;Roh, Young-Hee;Kim, Eun-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.69-85
    • /
    • 2014
  • Carbon stocks of NFI plots can be accurately estimated using field survey information. However, an accurate estimation of carbon stocks in other unsurveyed sites is very difficult. In order to fill this gap, various spatial information can be used as an ancillary data. In South Korea, there is the 1:5,000 forest type map that was produced by digital air-photo interpretation and field survey. Because this map contains very detailed forest information, it can be used as the high-quality spatial data for estimating carbon stocks. In this study, we compared three upscaling methods based on the 1:5,000 forest type map and 5th national forest inventory data. Map algebra(method 1), RK(Regression Kriging)(method 2), and GWR(Geographically Weighted Regression)(method 3) were applied to estimate forest carbon stock in Chungcheong-nam Do and Daejeon metropolitan city. The range of carbon stocks from method 2(1.39~138.80 tonC/ha) and method 3(1.28~149.98 tonC/ha) were more similar to that of previous method(1.56~156.40 tonC/ha) than that of method 1(0.00~93.37 tonC/ha). This result shows that RK and GWR considering spatial autocorrelation can show spatial heterogeneity of carbon stocks. We carried out paired t-test for carbon stock data using 186 sample points to assess estimation accuracy. As a result, the average carbon stocks of method 2 and field survey method were not significantly different at p=0.05 using paired t-test. And the result of method 2 showed the lowest RMSE. Therefore regression kriging method is useful to consider spatial variations of carbon stocks distribution in rugged terrain and complex forest stand.

Relationship between Tree Species Diversity and Carbon Stock Density in Moist Deciduous Forest of Western Himalayas, India

  • Shahid, Mohommad;Joshi, Shambhu Prasad
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2017
  • With the growing global concern about climate change, relationship between carbon stock density and tree species has become important for international climate change mitigation programmes. In this study, 150 Quadrats were laid down to assess the diversity, biomass and carbon stocks in each of the forest ranges (Barkot Range, Lachchiwala Range and Thano Range) of Dehra Dun Forest Division in Doon Valley, Western Himalaya, India. Community level carbon stock density was analyzed using Two Way Indicator Species Analysis. Species Richness and Shannon Weiner index was correlated with the carbon stocks of Doon Valley. Positive and weak relationship was found between the carbon stock density and Shannon Weiner Index, and between carbon stock density and Species Richness.

Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia

  • Gebeyehu, Getaneh;Soromessa, Teshome;Bekele, Tesfaye;Teketay, Demel
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • Background: Tropical montane forests played an important role in the provision of ecosystem services. The intense degradation and deforestation for the need of agricultural land expansion result in a significant decline of forest cover. However, the expansion of agricultural land did not completely destruct natural forests. There remain forests inaccessible for agricultural and grazing purpose. Studies on these forests remained scant, motivating to investigate biomass and soil carbon stocks. Data of biomass and soils were collected in 80 quadrats ($400m^2$) systematically in 5 forests. Biomass and disturbance gradients were determined using allometric equation and disturbance index, respectively. The regression modeling is employed to explore the spatial distribution of carbon stock along disturbance and environmental gradients. Correlation analysis is also employed to identify the relation between site factors and carbon stocks. Results: The result revealed that a total of 1655 individuals with a diameter of ${\geq}5cm$, representing 38 species, were measured in 5 forests. The mean aboveground biomass carbon stocks (AGB CS) and soil organic carbon (SOC) stocks at 5 forests were $191.6{\pm}19.7$ and $149.32{\pm}6.8Mg\;C\;ha^{-1}$, respectively. The AGB CS exhibited significant (P < 0.05) positive correlation with SOC and total nitrogen (TN) stocks, reflecting that biomass seems to be a general predictor of SOCs. AGB CS between highly and least-disturbed forests was significantly different (P < 0.05). This disturbance level equates to a decrease in AGB CS of 36.8% in the highly disturbed compared with the least-disturbed forest. In all forests, dominant species sequestrated more than 58% of carbon. The AGB CS in response to elevation and disturbance index and SOC stocks in response to soil pH attained unimodal pattern. The stand structures, such as canopy cover and basal area, had significant positive relation with AGB CS. Conclusions: Study results confirmed that carbon stocks of studied forests were comparable to carbon stocks of protected forests. The biotic, edaphic, topographic, and disturbance factors played a significant variation in carbon stocks of forests. Further study should be conducted to quantify carbon stocks of herbaceous, litter, and soil microbes to account the role of the whole forest ecosystem.