• Title/Summary/Keyword: Forest Burnt

Search Result 42, Processing Time 0.027 seconds

ECOREGION CLASSIFICATION WITH CLIMATE FACTORS AND FOREST FIRE

  • Shin, Joon-Hwan
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2002.12a
    • /
    • pp.94-95
    • /
    • 2002
  • South Korea is divided into five ecoprovinces and sixteen ecoregions. The criteria for ecoprovince classification are ecosystem connectivity and cultural homogeneity. Ecoregions are classified by cluster analysis. The variables used in the analysis are latitude, longitude, seasonal mean temperature, and seasonal precipitation. The large forest fires occurred in the specific ecoregions including Kangwon coastal ecoregion, WoolYoung coastal ecoregion, Hyungsan Taehwa coastal ecoregion, Upper Nagdong river basin ecoregion and Southeastern inland ecoregion. The largest forest fire in the korean history occurred in Kangwon coastal ecoregion in the year 2000. The fire devastated the forestland over 25,000ha. Korea Forest Service, Ministry of Environment, Province Kangwon and NGO organized an investigation committee for the restoration of the burnt area. The committee suggested restoration principles and also forged a restoration strategy of the Kangwon burnt area.

  • PDF

Basic study on the biological and physicochemical properties of burnt forest soil for the ecological restoration by organic waste (유기성폐자원을 이용한 산불토양의 생태학적 복원을 위한 토양의 생물학적, 물리화학적 기초특성연구)

  • Jung, Young-Ryul;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 2005
  • Forest soils were analyzed on their biological and physicochemical properties for the ecological restoration of burnt forest soil using organic wastes and proper microorganisms. Three kinds of soil samples were collected from undamaged soil(US), naturally restoring soil(NS) and artificially restoring soil(AS). All soil samples were sandy soil and acidic soil, ranged pH 5.34~5.78. Moisture content was higher in the soil of NS region. And the others were similar. Total organic matter and soluble sugar were higher at the surface, generally. Heterotrophic soil microbes were abundant at the surface soil of NS and subsoil of AS. Dehydrogenase, cellulase and phosphatase activities were higher at the NS soil. Especially, Dehydrogenase activity as primary index of soil microbial process showed high correlationship with moisture content(r=0.90, P < 0.05).

  • PDF

Effect of Rate and Timing of Reseeding on Productivity and Nutritive Value of Forages in Forest Fire Burnt Pasture (산불 피해 목초지에서 보파량과 보파 시기가 초지의 생산성과 사료가치에 미치는 영향)

  • Lee, Joung Kyong;Yoon, Sei-Hyung;Lim, Young-Cheol;Ji, Hee-Chung;Kim, Ki-Young;Choi, Gi-Jun;Kim, Won-Ho;Kim, Jong-Geun;Park, Hyung-Soo;Tandang, L. L.;Seo, Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.245-250
    • /
    • 2008
  • On April 4 to 6, 2005, there was a huge fire in Yangyang-gun, Kangwon-do, Korea, which burned over 250ha of forests and 246 buildings including 160 houses. The effects of reseeding rate and timing on productivity and nutritive value of forages in the forest fire burnt pasture in this study were investigated. The effect of reseeding could not be seen in the burnt pastures in terms of forage productivity and quality in short term but there was a long-term effect particularly with higher reseeding rates at later days after the fire on forage botanical composition. We concluded that forest fire brought reduction in pasture forage yield for a short period but it did not make a significant effect for a long term.

Monitoring of Forest Burnt Area using Multi-temporal Landsat TM and ETM+ Data

  • Lee, Seung-Ho;Kim, Cheol-Min;Cho, Hyun-Kook
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The usefulness of the multi-temporal satellite image to monitoring the vegetation recovery process after forest fire was tested. Using multi-temporal Landsat TM and ETM+data, NDVI and NBR changes over times were analyzed. Both NDVI and NBR values were rapidly decreased after the fire and gradually increased for all forest type and damage class. However, NBR curve showed much clearer tendency of vegetation recovery than NDVI. Both indices yielded the lowest values in severely damaged red pine forest. The results show the vegetation recovery process after forest fire can detect and monitor using multi-temporal Landsat image. NBR was proved to be useful to examine the recovering and development process of the vegetation after fire. In the not damaged forest, however the NDVI shows more potential capability to discriminate the forest types than NBR..

Analysis for Forest Fire Damage Severity Map in Cheongyang

  • Jung Tae-Woong;Yoon Bo-Yeol;Yoo Jae-Wook;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.537-540
    • /
    • 2004
  • Space-borne multi-sensor data could provide fire scar and bum severity mapping. This paper will present detail mapping of burnt areas in Cheongyange Yesan of Korea with ETM+ image. Burn severity map based on ETM+ image was found to be affected by strong topographic illumination effects in mountainous forest area. Topographic effect is a factor which causes errors in classification of high spatial resolution image like IKONOS image. Minnaert constants J( in each band of ETM+ image is derived for reduction of mountainous terrain effects. Finally, this paper computes quantitative analysis of forest fire damage by each forest types.

  • PDF

Change of Soil Microbial Populations after Forest Fire (산불 발생 후 토양 미생물의 밀도 변화)

  • 박동진;육연수;김종진;이상화;김창진
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.78-81
    • /
    • 1999
  • The change of soil microbial populations was studied at the burnt areas of Mt. Jirisan in Hddong-Gun, Kyungsangnam-Do, where the fire had occurred on Oct. 21 in 1997. On the first day of the fireextinguished, the microbial density (CFUIg dry soil) was investigated at the surface, 5 cm, 10 cm, 20cm, and 30 cm depth of soils. Bacteria at the surface and 5cm depth of burnt sites were estimatedwith the low density level of $10^2$ CFW/g soil comparing to the $10^6$ CFUIg soil of the neighboring unburntsites. Actinomycetes of burnt sites were completely disappeared at the surface, and were estimatedwith the low density level of $10^3$ CFUig soil at thc 5 cm depth comparing to the 10"CFUigsoil at the depth of unburnt sites. Fungi wcrc not isolated at the surface and 5 cm depth at all.However, the rarest lire was not found to decrease the microbial populalions at the lower depths than10 cm. In addilion, the recovery or soil microbial populations following the fire was bimonthly investigatedat the surrace and 5 cm depth. Most of microbial densities at the burnt sites were greatlyincreased two months after the fire, being enough to he compared with the neighboring unburnt sites.However, actinomycetes only at the surface of burnt sites still were estimated the low density level of$10^4$ CFUig soil 4 months after the fire comparing to the $10^6$CFIg soil of unburnt sites.TEX>CFIg soil of unburnt sites.

  • PDF

DEVELOPING THE REFORESTRATION SIMULATION SYSTEM USING 3D GIS

  • Jo Myung-Hee;Jo Yun-Won
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.721-724
    • /
    • 2005
  • In this study the spatial distribution characters of forest in forest damaged area were first considered by analyzing spatial data and monitoring forest landscape. Then suitable tree species on each site were selected through the weighted score analysis of GIS analysis methods. Finally, the best forest stand arrangement method could be presented on the 3D based simulation system for the advanced reforestation technology in Korea. For this purpose, the virtual reforestation system was implemented by using the concept of virtual GIS and CBD (Component Based Development) method. By use of this system the change offorest landscape of burnt forest area some years after reforestation practice could be detected and monitored by applying the site index and 3D modeling method.

  • PDF

Influence on forest fire spread & intensity on fuel type of burnt area. (산불피해지역 연료형태가 산불연소에 미치는 영향)

  • Lee, Si-Young;Lee, Myung-Woog;Yeom, Chan-Ho;Kwon, Chun-Geun;Park, Houng-Sek;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.321-324
    • /
    • 2008
  • Forest fire danger rate of thinning area was lower than that of non thinning area, because height rate of leewardside in burned stem of tree, damage rate of crown and mortality of tree in thinning area were 30.8%, 37% and 48.4% lower than that in non-thinning area, respectively. Intensity of forest fire varied depending upon topographical condition up slope, down slope, aspect, location as well as species, breast height diameter and forest tree density. Especially, a mountaintop area was burned down when forest fire was spread to up slope ridge of mountain.

  • PDF

A Simulation Model for the Study on the Forest Fire Pattern (산불확산패턴 연구를 위한 시뮬레이션 모델)

  • Song, Hark-Soo;Jeon, Wonju;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Because forest fires are predicted to increase in severity and frequency under global climate change with important environmental implications, an understanding of fire dynamics is critical for mitigation of these negative effects. For the reason, researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed the simulation models to mimic the forest fire spread patterns. In this study, we suggested a novel model considering the wind effect. Our theoretical forest was comprised of two different tree species with varying probabilities of transferring fire that were randomly distributed in space at densities ranging from 0.0 (low) to 1.0 (high). We then studied the distributional patterns of burnt trees using a two-dimensional stochastic cellular automata model with minimized local rules. We investigated the time, T, that the number of burnt trees reaches 25% of the whole trees for different values of the initial tree density, fire transition probability, and the degree of wind strength. Simulation results showed that the values of T decreased with the increase of tree density, and the wind effect decreased in the case of too high or low tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

A FORECASTING METHOD FOR FOREST FIRES BASED ON THE TOPOGRAPHICAL CLASSIFICATION SYSTEM AND SPREADING SPEED OF FIRE

  • Koizumi, Toshio
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.311-318
    • /
    • 1997
  • On April 27,1993, a forest fire occurred in Morito-area, Manba-city, Gunma-prefecture Japan. Under the prevailing strong winds, the fire spread and extended to the largest scale ever in Gunma-prefecture. The author chartered a helicopter on May 5, one week after the fire was extinguished, and took aerial photos of tile damaged area, and investigated the condition. of the fire through field survey and data collection. The burnt area extended. over about 100 hectares, and the damage amounted to about 190 million yen (about two million dollar). The fire occurred at a steep mountainous area and under strong winds, therefore, md and topography strongly facilitated the spreading, It is the purpose of this paper to report a damage investigation of the fire and to develop the forecasting method of forest fires based on the topographical analysis and spreading speed of fire. In the first place, I analyze the topographical structure of the regions which became the bject of this study with some topographical factors, and construct a land form classification ap. Secondly, I decide the dangerous condition of each region in the land form classification map according to the direction of the wind and spreading speed of f'kre. In the present paper, I try to forecast forest fires in Morito area, and the basic results for the forecasting method of forest fires were obtained with the topographical classification system and spreading speed of fire.

  • PDF