• 제목/요약/키워드: Forest Area

Search Result 4,202, Processing Time 0.039 seconds

Impacts of the Building Permit Area Change on the Forest Products Import Quantities in Korea (건축허가면적(建築許可面積)의 변화(變化)가 임산물(林産物) 수입(輸入)에 미치는 영향(影響))

  • Kim, Dong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.217-226
    • /
    • 2001
  • This study estimated the impacts of the building permit area change on the forest products import quantities in Korea. The first objective of this dissertation is to analyze whether there is any causal relationship between change in the building permit area and changes in the import quantities of forest products in Korea. Assuming that there is any causal relationship, the second objective is to evaluate the dynamics of the impacts of the building permit area change on the forest products import quantities in Korea. The relationship between the building permit area and the import quantity was represented by bivariate vector autoregressive or vector error correction model. Whether there is any causal relationship between change in the building permit area and changes in the import quantities of forest products was analyzed by the causality test of Granger. And the dynamics of the impacts of the building permit area change on the forest products import quantities were evaluated by variance decomposition analysis and impulse response analysis. The import quantity of forest products can be explained by the lagged building permit area variables and the lagged import quantity variables in Korea. Change in the building permit area causes change in the high-density fiberboard import quantity in Korea. In the bivariate model of the high-density fiberboard import quantity, after six months, the building permit area change accounts for about ten percent of variation in the import quantity, and its own change accounts for about ninety percent of variation in the import quantity. On the other hand, the impact of a shock to the building permit area is significant for about six months on the import quantity of high-density fiberboard in Korea. That is, if the building permit area change indeed had an impact on the import quantity of high-density fiberboard in Korea, it was only of a short-term nature.

  • PDF

Developing Landscape Analysis Method for Forest Fire Damaged Area Restoration Using Virtual GIS (Virtual GIS를 이용한 산불피해지 복구 경관분석기법 개발)

  • Jo, Myung-Hee;Lee, Myung-Bo;Kim, Joon-Bum;Lim, Ju-Hun;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • In Korea the number of forest fire occurrence and its damaged area have increased drastically and the plans for afforestation such as sound erosion control restoration and forestation have performed to restore for forest fire damaged area. In this study fire resistant forest was developed by selecting fire resistance tree species and applying GIS analysis, considering the characteristic of forest fire and location environment in forest fire damaged area along the east coast. Moreover, it showed the possibility of how spatial information technology such as virtual GIS could be applied during restoring forest fire damaged area and approaching landscape ecology researches. Especially the fire resistant forest was established by using GIS analysis against large scaled forest fires then the best forest arrangement was performed through this fire resistant forest species and 3D modeling in study area. In addition, the forest landscape was established through site index on passing years and then 3D topography and tracking simulation, which is very similar to real world, were constructed by using virtual GIS.

  • PDF

Comparison of Carbon Stock Between Forest Edge and Core by Using Connectivity Analysis (연결성 분석을 활용한 산림의 주연부와 내부의 탄소저장량 비교)

  • Sung, Sun-Yong;Lee, Dong-Kun;Mo, Yong-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • Forest ecosystem is considered as an important stepping stone to minimize the impact of climate change. However, the rapid urbanization has caused fragmentation of forest ecosystem. The fragmentation of forest patch results in edge effect which brings about adverse impacts on forest function and structure. Degradation of forest ecosystem decreases carbon sequestration because edge effect reduces productivity. Therefore, we analyzed the impact of forest edge effect on forest ecosystem carbon stock change in Seongnam-si, Gyeonggi-do. We used connectivity analysis to determine forest edge and core area. The field study sites were selected with considering forest age, density, class and soil type. Secondly, forest carbon stock was calculated with allometric equation. The soil carbon stock was derived from Walkely-Black method. Lastly, Mann-Whitney test was conducted to validate differences between carbon stock in edge and core area. As a result of study, the connectivity analysis was effective to determine forest edge and core. The core and edge of forest patch showed different composition of tree species and soil properties. Carbon stock per tree in the edge area was lower than that in the core area. However, the difference of soil organic carbon content between the edge and core were relatively small. This assessment can be applied for the conservation of forest patch as well as quantitative assessment on the forest carbon stock change caused by fragmentation.

Land cover change and forest fragmentation analysis for Naypyidaw, Myanmar (미얀마 네피도 지역의 도시개발로 인한 토지피복변화 탐지 및 산림파편화 분석)

  • Kong, In-Hye;Baek, Gyoung-Hye;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.147-156
    • /
    • 2013
  • Myanmar(Burma) has been preserved valuable environmental resources because of its political isolation. But recently, Myanmar has moved a capital city(Naypyidaw) at central forest area and it has been urbanized radically since 2005. In this paper, we built multi-temporal land cover map from Landsat images of 1970s to 2012 with ENVI 4.5 software. For a broad approach, administrative district Yamethin which includes Naypyidaw is classified into 3 classes and with only Naypyidaw region is classified with 4-5 classes to analyse specific changes. And with forest cover extracted by Object Oriented Classification, we evaluated forest fragmentation before and after the development using Patch Analyst(FRAGSTATs 3.3) at Yamethin area. For Yamethin area, there were significant forest cover change, 51% in 1999 to 48% in 2012, and for Naypyidaw area, 67% in 1999 to 57% in 2012 respectively. Also landscape indices resulted from Patch Analyst concluded that the total edge, edge density and mean shaped index of forest patches increased and total core area is decreased. It is attributed from land cover change with urbanization and agricultural land expansion.

Differences in Density and Body Weight of Rodents in Different Restored Forest Areas after Forest Fire (산불피해지 복원방법에 따른 설치류의 서식밀도 및 체중 차이)

  • Lee, Enn Jae;Lee, Woo-Shin;Rhim, Shin-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.365-369
    • /
    • 2006
  • This study was conducted to clarity the differences in density and body weight of rodents among unburned and two burned areas (silvicultured and natural restored areas) after forest fire from July to September 2004 in coniferous forest of Samcheok, Korea. The density of rodents was the least in the silvicultured area. There was no differences in density between the unburned and natural restored areas. Also, mean body weight of rodents in the natural restored area was higher than in the silvicultured area. Shrubs, seedlings, snags and CWD (coarse woody debris) would be good for inhabitation of the rodents in forest fired area. Therefore, coverage of understory layer should be maintained in forest fired area.

EVALUATION FOR DAMAGED DEGREE OF VEGETATION BY FOREST FIRE USING LIDARAND DIGITALAERIAL PHOTOGRAPH

  • Kwak, Doo-Ahn;Chung, Jin-Won;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;We, Gwang-Jae;Kim, Tae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.533-536
    • /
    • 2007
  • The LiDAR data structure has the potential for modeling in three dimensions because the LiDAR data can represent voxels with z value under certain defined conditions. Therefore, it is possible to classify the physical damaged degree of vegetation by forest fire as using the LiDAR data because the physical loss of canopy height and width by forest fire can be relative to an amount of points reached to the ground through the canopy of damaged forest. On the other hand, biological damage of vegetation by forest fire can be explained using the NDVI (Normalized Difference Vegetation Index) which show vegetation vitality. In this study, we graded the damaged degree of vegetation by forest fire in Yangyang-Gun of South Korea using the LiDAR data for physical grading and digital aerial photograph including Red, Green, Blue and Near Infra-Red bands for biological grading. The LiDAR data was classified into 2 classes, of which one was Serious Physical Damaged (SPD) and the other was Light Physical Damaged (LPD) area. The NDVI was also classified into 2 classes which are Serious Biological Damaged (SBD) and Light Biological Damaged (LBD) area respectively. With each 2 classes ofthe LiDAR data and NDVI, the damaged area by forest fire was graded into 4 degrees like damaged class 1,2,3 and 4 grade. As a result of this study, 1 graded area was the broadest and next was the 3 grade. With this result, we could know that the burned area by forest fire in Yangyang-Gun was damaged rather biologically because the NDVI in 1 and 3 grade appeared low value whereas the LiDAR data in 1 and 3 grade included light physical damage like the LPD.

  • PDF

Long-Term Change of the Amount of Soil Erosion in Forest Fire (산불 피해지 토양침식량의 장기적인 변화에 관한 연구)

  • Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.4
    • /
    • pp.363-367
    • /
    • 2008
  • The purpose of this study was to evaluate the change of the amount of soil erosion by comparisons between burned and unburned area after forest fire. The amount of soil erosion in burned area was more high 11.2 times in year of fire, 8.4 times in 1 later year, 2 times in 5 later year and 1.3 times in 10 later year than in unburned area. The ratio of soil erosion in burned area was reduced to 98% of 10 later year as compared to the year of fire. Therefore, the soil erosion in the burned area almost tended to stabilization like unburned area passing ten year after forest fire. The most affecting factors on the amount of soil erosion in burned and unburned area were unit rainfall, number of unit rainfall and number of rainfall accumulated.

Estimation of Forest Productive Area of Quercus acutissima and Quercus mongolica Using Site Environmental Variables (산림 입지토양 환경요인에 의한 상수리나무와 신갈나무의 적지추정)

  • Lee, Seung-Woo;Won, Hyung-Kyu;Shin, Man-Yong;Son, Young-Mo;Lee, Yoon-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.429-434
    • /
    • 2007
  • This study was conducted to estimate site productivity of Quercus acutissima and Quercus mongolica by four forest climatic zones. We used site environmental variables (28 geographical and pedological factors) and site index as a site productivity indicator from nation-wide 23,315 stands. Based on multiple regression analysis between site index and major environmental variables, the best-fit multivaliate models were made by each species and forest climatic zone. Most of site index prediction models by species were regressed with seven to eight factors, including altitude, relief, soil depth, and soil moisture etc. For those models, three evaluation statistics such as mean difference, standard deviation of difference, and standard error of difference were applied to the test data set for the validation of the results. According to the evaluation statistics, it was found that the models by climatic zones and species fitted well to the test data set with relatively low bias and variation. Also having above middle of site index range, total area of productive sites for the two Quercus spp. estimated by those models would be about 6% of total forest area. Northern temperate forest zone and central temperate forest zone had more productive area than southern temperate forest zone and warm temperate forest zone. As a result, it was concluded that the regressive prediction with site environmental variables by climatic zones and species had enough estimation capability of forest site productivity.

Assessment of Above Ground Carbon Stock in Trees of Ponda Watershed, Rajouri (J&K)

  • Ahmed, Junaid;Sharma, Sanjay
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.120-128
    • /
    • 2016
  • Forest sequesters large terrestrial carbon which is stored in the biomass of tree and plays a key role in reducing atmospheric carbon. Thus, the objectives of the present study were to assess the growing stock, above ground biomass and carbon in trees of Ponda watershed of Rajouri district (J&K). IRS-P6 LISS-III satellite data of October 2010 was used for preparation of land use/land cover map and forest density map of the study area by visual interpretation. The growing stock estimation was done for the study area as well as for the sample plots laid in forest and agriculture fields. The growing stock and biomass of trees were estimated using species specific volume equations and using specific gravity of wood, respectively. The total growing stock in the study area was estimated to be $0.25million\;m^3$ which varied between $85.94m^3/ha$ in open pine to $11.58m^3/ha$ in degraded pine forest. However in agriculture area, growing stock volume density of $14.85m^3/ha$ was recorded. Similarly, out of the total biomass (0.012 million tons) and carbon (0.056 million tons) in the study area, open pine forest accounted for the highest values of 43.74 t/ha and 19.68 t/ha and lowest values of 5.68 t/ha and 2.55 t/ha, respectively for the degraded pine forest. The biomass and carbon density in agriculture area obtained was 5.49 t/ha and 2.47 t/ha, respectively. In all the three forest classes Pinus roxburghii showed highest average values of growing stock volume density, biomass and carbon.

CHANGE DETECTION ANALYSIS OF FORESTED AREA IN THE TRANSITION ZONE AT HUSTAI NATIONAL PARK, CENTRAL MONGOLIA

  • Bayarsaikhan, Uudus;Boldgiv, Bazartseren;Kim, Kyung-Ryul;Park, Kyeng-Ae
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.426-429
    • /
    • 2007
  • One of the widely used applications of remote sensing studies is environmental change detection and biodiversity conservation. The study area Hustai Mountain is situated in the transition zone between the Siberian taiga forest and Central Mongolian arid steppe. Hustai National Park carries out one of several reintroduction programs of takhi (wild horse or Equus ferus przewalskii) from various zoos in the world and it represents one of a few textbook examples of successful reintroduction of an animal extinct in the wild. In this paper we describe the results of an analysis on the change of remaining forest area over the 7-year period since Hustai Mountain was designated as a protected area for reintroduction to wild horses. Today the forested area covers approximately 5% of the Hustai National Park, mostly the north-facing slopes above 1400 m altitude. Birch (Betula platyphylla) and aspen (Populus tremula) trees are predominant in the forest. We used Landsat ETM+ images from two different years and multi temporal MODIS NDVI data. Land types were determined by supervised classification methods (Maximum Likelihood algorithm) verified with ground-truthing data and the Land Change Modeler (LCM) which was developed by Clark Labs. Forested area was classified into three different land types, namely the forest land, mountain meadow and mountain steppe. The study results illustrate that the remaining birch forest has rapidly changed to fragmented forest land and to open areas. Underlying causes for such a rapid change during the 15-year period may be manifold. However, the responsible factors appear to be the drying off and outbreak of forest pest species (such as gypsy moth or Lymantria dispar) in the area.

  • PDF