The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.
본 논문의 목적은 섬진다목적댐 유역의 하천을 대상으로 강우시에 단기 수질상태를 예측하기 위하여 병렬다중결선의 계층구조를 갖는 신경망이론을 이용하였다. 본 연구에 적용한 신경망이론의 학습알고리즘으로는 역전파알고리즘을 사용하였으며, 최적모형의 개발을 위해 모멘트법-적응학습율기법을 이용하였다. 하천 수질오염 부하량에 영향을 미치는 요소로서 상류로부터 유입되는 유입량과 수질인자인 BOD, COD, SS를 고려하였다. 섬진다목적댐 유역에 대해 단기 수질을 예측할 수 있는 다층신경망모형을 개발하기 위해 은닉층 노드수와 학습회수에 변화를 주어 각 수질인자별로 4가지씩 총 12개의 모형을 구성하여 학습을 실시하였다. 제안된 신경망모형의 검증을 위해 학습시키지 않은 수질자료를 예측한 결과 양호한 것으로 분석되었고, 하천수계의 단기 수질오염 예측에 활용할 수 있을 것으로 사료되었다.
도시에서 홍수 피해를 방지하기 위한 침수를 예측하기 위해 본 논문에서는 딥러닝(Deep Learning) 기법을 적용한다. 딥러닝 기법 중 시계열 데이터 분석에 적합한 Recurrent Neural Networks (RNNs)을 활용하여 강의 수위 관측 데이터를 학습하고 침수 가능성을 예측하였다. 예측 정확도 검증을 위해 사용한 데이터는 미국의 트리니티강의 데이터로, 학습을 위해 2013 년부터 2015 년까지 데이터를 사용하였고 평가 데이터로는 2016 년 데이터를 사용하였다. 입력은 16개의 레코드로 구성된 15분단위의 시계열 데이터를 사용하였고, 출력으로는 30분과 60분 후의 강의 수위 예측 정보이다. 실험에 사용한 딥러닝 모델들은 표준 RNN, RNN-BPTT(Back Propagation Through Time), LSTM(Long Short-Term Memory)을 사용했는데, 그 중 LSTM의 NE(Nash Efficiency)가 0.98을 넘는 정확도로 기존 연구에 비해 매우 높은 성능 향상을 보였고, 표준 RNN과 RNN-BPTT에 비해서도 좋은 성능을 보였다.
최근 한국은 기후변화로 인한 기온 및 수온 상승, 빈번한 집중호우와 친수공간 조성에 따른 적극적인 하천의 활용 등으로 인하여 하천 및 저수지 내 수질관리에 있어 해결해야 하는 많은 문제점을 가지고 있다. 본 연구는 효율적인 수질관리를 위하여 인공신경망을 이용한 단기조류예측모형 구축에 관한 연구이다. 대상지역으로 조류가 번식하기 좋은 조건을 지니고 있는 금강유역 내 대청호를 선정하였고 설치되어 있는 수질 자동측정망의 일 단위자료를 이용하였다. 다층전방향신경망의 역전파 알고리즘을 이용하여 단기(1일, 3일, 7일) 조류를 예측할 수 있는 모형을 구축하였다. 본 모형에서는 대청호 내 수문 및 수질성분을 교차상관분석을 기초하여 단기조류예측모형의 입력 성분을 선정한 후 다양한 조류예측 신경망 모형을 구축하여 결과에 대한 검증을 실시하였다. 구축된 단기조류예측모형은 자연발생적인 기작과 유사한 현상을 재현할 수 있는 다양한 수질인자를 고려하여 단기조류예측모형을 구축한 경우 예측의 정확도가 높게 도출되었다. 본 연구는 신경망모형의 최대 장점인 비선형성 및 간편성 등을 고려하였을 때 우리나라의 수질예측에 적합한 신경망 모형을 구축할 수 있으며 이를 통한 하천 및 호수 내 효율적인 수질관리 방안을 제시할 수 있을 것이다.
본 연구에서는 홍수시 다목적댐의 효율적 운영을 위하여 상류로부터 유입되는 홍수유입량을 실시간으로 예측하기 위해 역전파 신경망 모형을 사용하여 댐유입량 예측모형(Neural Dam Inflow Forecasting Model; NDIFM)을 개발하였다. NDIFM은 다목적댐에 의한 하류의 홍수조절 비중이 큰 낙동강의 남강댐 유역에 적용하였으며, 입력자료로는 댐유역 평균강우량, 실측 댐유입량, 예측 댐유입량 통을 사용하여 실시간 댐유입량 예측의 가능성을 검토하였다. 실측치와 예측치를 비교ㆍ검토한 결과 제시한 세 가지 모형 중 NDIFM-I이 가장 우수한 결과를 나타내었으며, NDIFM-II 및 NDIFM-III 또한 다양한 예측가능성을 보여주었다. 따라서, 강우-유출의 비선형시스템 모의를 위하여 물리적 매개변수가 복잡한 개념적 모형보다는 양질의 수문관측 자료만 축적된다면 블랙박스 모형인 신경망 모형이 실시간 홍수예측에 효율적으로 활용될 수 있을 것이다.
최근 이상기후 현상으로 발생빈도 및 규모가 증가한 가뭄은 다양한 분야에서 극심한 문제를 유발하여 가뭄에 의한 물부족 발생 시 수생태 건강성 확보를 위한 합리적인 대응 방안을 마련하기 위해 가뭄 감시, 전망 및 대응기술 개발이 필요하다. 본 연구에서는 유역모델 HSPF와 수질모델 QUAL-MEV를 연계하여 가뭄 기간 물 부족 상태가 수문 순환을 통해 변동되는 수질을 예측하였다. SPI, RCP 4.5 시나리오를 검토하고 HSPF 및 QUAL-MEV를 활용하여 유량변동에 따른 수질변화를 모의하여 유량변동에 따른 수질 변화를 분석하였다. 갈수기 유량과 수질의 관계는 높으나 강수량과 수질의 관계는 미비한 것으로 나타났다. 유량 및 SPI6는 상이한 경향이 나타나 가뭄의 영향으로 변화되는 수질 예측시 중장기 가뭄지수와 관계는 미비한 것으로 나타났다. 가뭄에 의한 수질 영향을 평가하기 위해 단기간의 가뭄지수 활용 및 유량 변동에 따른 평가방안 마련이 필요한 것으로 사료된다.
수문학적 해석에 필요한 기본 자료인 강우 자료의 취득 방법 중 지상관측소는 강우량을 직접 관측하기 때문에 실측 강우량 정보를 얻는 장점이 있으나, 현업에서 필요한 면적강우량을 얻기 위해서는 다수의 관측소를 설치해야 하는 단점이 있다. 한편, 강우레이더는 넓은 범위의 강우량을 실시간으로 취득할 수 있으며, 특히 공간적으로 한정되어 발생하는 국지성 돌발홍수의 원인이 되는 단기 집중 호우를 추적하기 용이한 장점이 있다. 따라서 본 연구에서는 기상청에서 편차 보정과 품질 관리가 이루어지고 있어 상당한 신뢰 수준을 확보하고 있고, 현장에서 쉽게 제공 받을 수 있는 강우레이더 영상인 CAPPI (Constant Altitude Plan Position Indicator) 합성영상으로부터 유역평균 강우를 추출하는 방법으로서 기존의 연산방법인 레스터 방식에서 벗어나 소유역에도 적용될 수 있는 벡터 방식의 영상 추출 기법 CIVCOM을 제시하고 추출된 자료의 타당성을 비교 검토하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.