• Title/Summary/Keyword: Forecasting combination

Search Result 105, Processing Time 0.028 seconds

Assessment of Land Cover Changes from Protected Forest Areas of Satchari National Park in Bangladesh and Implications for Conservation

  • Masum, Kazi Mohammad;Hasan, Md. Mehedi
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.199-206
    • /
    • 2020
  • Satchari National Park is one of the most biodiverse forest in Bangladesh and home of many endangered flora and fauna. 206 tons of CO2 per hectare is sequestrated in this national park every year which helps to mitigate climate issues. As people living near the area are dependent on this forest, degradation has become a regular phenomenon destroying the forest biodiversity by altering its forest cover. So, it is important to map land cover quickly and accurately for the sustainable management of Satchari National Park. The main objective of this study was to obtain information on land cover change using remote sensing data. Combination of unsupervised NDVI classification and supervised classification using maximum likelihood is followed in this study to find out land cover map. The analysis showed that the land cover is gradually converting from one land use type to another. Dense forest becoming degraded forest or bare land. Although it was slowed down by the establishment of 'National Park' on the study site, forecasting shows that it is not enough to mitigate forest degradation. Legal steps and proper management strategies should be taken to mitigate causes of degradation such as illegal felling.

A Study on Long-term Maximum power Demand Forescasting Using Exponential Smoothing (지수평활에 의한 장기 최대전력 수요 예측에 관한 연구)

  • 고희석;이태기
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.3
    • /
    • pp.43-49
    • /
    • 1992
  • Forecasting of electric power demand has been a basic element for electric power system operation and system development, and it's accuracy has very strong influence on reliability and economical efficience of power supply. So, in this paper, long―term maximum electric power demand has been forecasted by using the triple exponential smoothing method initiated R.G.Brown. It has been regarded this method as high accuracy and operational convenience. The smoothing function is a liner combination of all past observations and the weight given to previous observations decreases geometrically with age.

  • PDF

Prediction of the $24^{th}$ Solar Maximum Based on the Principal Component-and-Autoregression method

  • Chae, Jong-Chul;Oh, Seung-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.100.1-100.1
    • /
    • 2011
  • Everybody wants to see the future, but nobody does for sure. Reliably forecasting the solar activity in the near future looks like an easy task, but in fact still remains one of difficult problems in the solar-terrestrial research. We have sought for good univariate methods that can predict future smoothed sunspot numbers reasonably well based on past smoothed sunspot number data only. Here we consider a specific method we call principal component-and-autoregression (PCAR) method. The variation of sunspot number during a period of finite duration (past) before an epoch (present) is modeled by a linear combination of a small number of dominant principal components, and this model is extended to the period (future) beyond the epoch using the autoregressive model of finite order. From the application of this method, we find that the $24^{th}$ solar maximum is likely to occur near the end of the year 2013 (and there is a possibility that it occurs earlier near the start of 2013), and to have a peak sunspot number of about 86, indicating that the activity of the $24^{th}$ cycle will be weaker than the average. We will discuss how much this estimate is reliable.

  • PDF

A PNN approach for combining multiple forecasts (예측치 결합을 위한 PNN 접근방법)

  • Jun, Duk-Bin;Shin, Hyo-Duk;Lee, Jung-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.3
    • /
    • pp.193-199
    • /
    • 2000
  • In many studies, considerable attention has been focussed upon choosing a model which represents underlying process of time series and forecasting the future. In the real world, however, there may be some cases that one model can not reflect all the characteristics of original time series. Under such circumstances, we may get better performance by combining the forecasts from several models. The most popular methods for combining forecasts involve taking a weighted average of multiple forecasts. But the weights are usually unstable. In cases the assumptions of normality and unbiasedness for forecast errors are satisfied, a Bayesian method can be used for updating the weights. In the real world, however, there are many circumstances the Bayesian method is not appropriate. This paper proposes a PNN(Probabilistic Neural Net) approach as a method for combining forecasts that can be applied when the assumption of normality or unbiasedness for forecast errors is not satisfied. In this paper, PNN method, which is similar to Bayesian approach, is suggested as an updating method of the unstable weights in the combination of the forecasts. The PNN method has been usually used in the field of pattern recognition. Unlike the Bayesian approach, it requires no assumption of a specific prior distribution because it gets probabilities by using the distribution estimated from given data. Empirical results reveal that the PNN method offers superior predictive capabilities.

  • PDF

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

An Analysis of Service Robot Quality Attributes through the Kano Model and Decision Tree : Financial Service Robot for Introduction to Bank Branches (카노와 의사결정나무를 활용한 금융서비스 로봇의 품질속성 분석 : 은행지점 도입용 금융서비스 로봇 사례)

  • Song, Young-gue;Lee, Jungwoo;Han, Chang Hee
    • Journal of Information Technology Services
    • /
    • v.20 no.2
    • /
    • pp.111-126
    • /
    • 2021
  • A Kano model was used to classify the quality attributes of the service robot function for actual deployment that can support and replace bank employees. Quality attributes for a total of 6 dimensions and 23 service elements were divided into bank employees and customer groups, and service priorities were derived after comparative analysis. The Decision tree model was used to supplement the excessive simplification of quality attributes by the modest number of Kano models and to classify and predict by segment market. Of the 23 services, 16 were classified into the same attributes in both groups. 6 services classified as combination attributes used a Decision tree to identify differences in perception of quality attributes among groups. In terms of basic financial services and professional financial services, it was confirmed that bank employees feel financial service robots more attractive than ordinary customers. In the design of IT convergence service, we propose a methodology for deriving quality attributes by combining a Kano model for classifying quality attributes of two groups and a Decision tree for forecasting subdivision markets.

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

Preliminary Uncertainty Analysis to Build a Data-Driven Prediction Model for Water Quality in Paldang Dam (팔당댐 유역의 데이터 기반 수질 예측 모형 구성을 위한 사전 불확실성 분석)

  • Lee, Eun Jeong;Keum, Ho Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 2022
  • For water quality management, it is necessary to continuously improve the forecasting by analyzing the past water quality, and a Data-driven model is emerging as an alternative. Because the Data-driven model is built based on a wide range of data, it is essential to apply the correlation analysis method for the combination of input variables to obtain more reliable results. In this study, the Gamma Test was applied as a preceding step to build a faster and more accurate data-driven water quality prediction model. First, a physical-based model (HSPF, EFDC) was operated to produce daily water quality reflecting the complexity of the watershed according to various hydrological conditions for Paldang Dam. The Gamma Test was performed on the water quality at the water quality prediction site (Paldangdam2) and major rivers flowing into the Paldang Dam, and the method of selecting the optimal input data combination was presented through the analysis results (Gamma, Gradient, Standar Error, V-Ratio). As a result of the study, the selection criteria for a more efficient combination of input data that can save time by omitting trial and error when building a data-driven model are presented.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.