• Title/Summary/Keyword: Forecast accuracy

Search Result 490, Processing Time 0.03 seconds

Prediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China

  • Sun, Wei;Sun, Jingyi
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.302-311
    • /
    • 2017
  • Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.

Regional Extension of the Neural Network Model for Storm Surge Prediction Using Cluster Analysis (군집분석을 이용한 국지해일모델 지역확장)

  • Lee, Da-Un;Seo, Jang-Won;Youn, Yong-Hoon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.259-267
    • /
    • 2006
  • In the present study, the neural network (NN) model with cluster analysis method was developed to predict storm surge in the whole Korean coastal regions with special focuses on the regional extension. The model used in this study is NN model for each cluster (CL-NN) with the cluster analysis. In order to find the optimal clustering of the stations, agglomerative method among hierarchical clustering methods was used. Various stations were clustered each other according to the centroid-linkage criterion and the cluster analysis should stop when the distances between merged groups exceed any criterion. Finally the CL-NN can be constructed for predicting storm surge in the cluster regions. To validate model results, predicted sea level value from CL-NN model was compared with that of conventional harmonic analysis (HA) and of the NN model in each region. The forecast values from NN and CL-NN models show more accuracy with observed data than that of HA. Especially the statistics analysis such as RMSE and correlation coefficient shows little differences between CL-NN and NN model results. These results show that cluster analysis and CL-NN model can be applied in the regional storm surge prediction and developed forecast system.

Operational Water Quality Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 수질 예측)

  • Shin, Chang Min;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.570-581
    • /
    • 2016
  • A watershed model was constructed using the Hydrological Simulation Program Fortran to predict the water quality, especially chlorophyll-a concentraion, at major tributaries of the Nakdong River basin, Korea. The BOD export loads for each land use in HSPF model were estimated at $1.47{\sim}8.64kg/km^2/day$; these values were similar to the domestic monitoring export loads. The T-N and T-P export loads were estimated at $0.618{\sim}3.942kg/km^2/day$ and $0.047{\sim}0.246kg/km^2/day$, slightly less than the domestic monitoring data but within the range of foreign literature values. The model was calibrated at major tributaries for a three-year period (2008 to 2010). The deviation values ranged from -31.5~1.6% of chlorophyll-a, -24.0~2.2% of T-N, and -5.7~34.8% of T-P. The root mean square error (RMSE) ranged from 4.3~44.4 ug/L for chlorophyll-a, -0.6~1.5 mg/L for T-N, and 0.04~0.18 mg/L for T-P, which indicates good calibration results. The operational water quality forecasting results for chlorophyll-a presented in this study were in good agreement with measured data and had an accuracy similar with model calibration results.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

Preprocessing of the Direct-broadcast Data from the Atmospheric Infared Sounder (AIRS) Sounding Suite on Aqua Satellite

  • Kim, Seungbum;Park, Hyesook;Kim, Kumlan;Park, Seunghwan;Kim, Moongyu;Lee, Jongju
    • Atmosphere
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • We present a pre processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy [s1]of a radiosonde (1 K in 1-km layer for temperature and 10% in 2-km layer for humidity). The core of the pre p rocessor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction to compute the Earth's radiance. Then we remove spurious data and retrieve the brightness temperature (Tb). Since we process the direct-broadcast data almost for the first time among the AIRS directbroadcast community, special attention is needed to understand and verify the products. This includes the pixel-to-pixel verification of the direct-broadcast product with reference to the fullorbit product, which shows the difference of less than $10^{-3}$ K in IR Tb.

A Study on the Improvement of Aircraft Contract Maintenance System (항공장비 외주정비체계 개선방안 연구)

  • Suh Sung-chul;Park Seung-hwan
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.2
    • /
    • pp.96-107
    • /
    • 2004
  • This paper deals with $\ulcorner$Requirement Decision Model for Repair Parts supplied by the Government$\lrcorner$ which is to reduce Aircraft Contract Maintenance Cost. It aims to find solutions to the fundamental problems of the Aircraft Contract Maintenance System. Under the current Aircraft Contract Maintenance System, it is hard to forecast the exact demand of repair parts, so support rate of Repair Parts supplied by the Government is restricted under 50 percent. It is inevitable to purchase Repair Parts from the firm with much higher price than those of Government source. However, absence of fixed demand pattern makes it difficult to improve accuracy of demand forecast. As a solution to these problems, this model prevents a cost increase due to the unit price difference between Repair Parts supplied by the Government and Repair Parts purchased by the Firm. It also reflects demand characteristics of each repair part, and prevents continual stock increase by setting an upper limit on the amount of Repair Parts supplied by the Government. The effectiveness of this model is verified by empirical analysis using the latest raw data. By applying this model to real situation, we expect to reduce about 4 billion won every year.

Studies on the Forecast of Smart Phone Addicted Youths and the Effect of Rehabilitation Programs (청소년 스마트폰 중독자 예측 및 회복 프로그램에 관한 연구)

  • Jeong, Kwan-Yong;Byun, Sang-Hae
    • Korean System Dynamics Review
    • /
    • v.16 no.3
    • /
    • pp.77-96
    • /
    • 2015
  • This study aims to forecast of the number of smart phone addicted youths and to evaluate the effect of rehabilitation programs. A system dynamics model is developed to describe the processes of addiction and transits between phases as well as the diffusion of smart phones. The youths are grouped into non users, general users, potential risky users, and high risky users. The model utilizes the population distributions over ages for the next 30 years forecasted by Korean Government. The number of youths decreases for the next decade or so, and the number of youths who owns smart phone will reach maximum at 2017. As for the rehabilitation programs, the model includes the preventive education for general users, counseling for potential risky users, and professional therapy for high risky users. The preventive education restricts the transit from general users to potential risky users. Counseling increases the transit from potential risky users to general users while it decreases the transit to high risky users. Professional therapy improves transit to potential risky users and to general users. Although the model cannot be validated the accuracy owing to the lack of data, it describes these transit within the reasonable ranges and can be used to study the allocation of the limited resources to maximize the outcome.

24-Hour Load Forecasting For Anomalous Weather Days Using Hourly Temperature (시간별 기온을 이용한 예외 기상일의 24시간 평일 전력수요패턴 예측)

  • Kang, Dong-Ho;Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1144-1150
    • /
    • 2016
  • Short-term load forecasting is essential to the electricity pricing and stable power system operations. The conventional weekday 24-hour load forecasting algorithms consider the temperature model to forecast maximum load and minimum load. But 24-hour load pattern forecasting models do not consider temperature effects, because hourly temperature forecasts were not present until the latest date. Recently, 3 hour temperature forecast is announced, therefore hourly temperature forecasts can be produced by mathematical techniques such as various interpolation methods. In this paper, a new 24-hour load pattern forecasting method is proposed by using similar day search considering the hourly temperature. The proposed method searches similar day input data based on the anomalous weather features such as continuous temperature drop or rise, which can enhance 24-hour load pattern forecasting performance, because it uses the past days having similar hourly temperature features as input data. In order to verify the effectiveness of the proposed method, it was applied to the case study. The case study results show high accuracy of 24-hour load pattern forecasting.

R&D Intensity and Regulation Fair Disclosure

  • Park, Jin-Ha;Shim, Hoshik
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.1
    • /
    • pp.281-288
    • /
    • 2019
  • This study examines the relationship between R&D intensity and disclosure. R&D activities are essential in bringing innovation to companies. However, R&D activities are naturally uncertain and increase information asymmetry. Thus, firms with high R&D activities are more likely to have the incentive to communicate the potential of R&D investment to the market through voluntary disclosure and, concurrently, resolve information asymmetry. Meanwhile, incentives to less voluntary disclosure exist because of the proprietary cost and the risk of competitiveness loss. Furthermore, the uncertainties inherent in R&D activities caused the possible decrease in the information accuracy. For the two opposing views, this study investigates the relationship between R&D intensity and disclosure frequency using the Regulation Fair Disclosure data in Korea. Moreover, the relationship between R&D intensity and usefulness of the information disclosed is also examined. Using firm sample listed in the 2011-2016 Korea Stock Market, results show that firms with high R&D intensity make disclosures more frequent. Subsequently, the analysis using forecast sample shows that management forecast error is higher in firms with high R&D intensity. This research contributes to the existing literature by presenting evidence that R&D intensity is a significant factor affecting manager's disclosure behavior and information usefulness.

A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM

  • Ding, Min-jie;Zhang, Shao-zhong;Zhong, Hai-dong;Wu, Yao-hui;Zhang, Liang-bin
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2019
  • The prediction of the sum of container is very important in the field of container transport. Many influencing factors can affect the prediction results. These factors are usually composed of many variables, whose composition is often very complex. In this paper, we use gray relational analysis to set up a proper forecast index system for the prediction of the sum of containers in foreign trade. To address the issue of the low accuracy of the traditional prediction models and the problem of the difficulty of fully considering all the factors and other issues, this paper puts forward a prediction model which is combined with a back-propagation (BP) neural networks and the support vector machine (SVM). First, it gives the prediction with the data normalized by the BP neural network and generates a preliminary forecast data. Second, it employs SVM for the residual correction calculation for the results based on the preliminary data. The results of practical examples show that the overall relative error of the combined prediction model is no more than 1.5%, which is less than the relative error of the single prediction models. It is hoped that the research can provide a useful reference for the prediction of the sum of container and related studies.