• Title/Summary/Keyword: Forced-Convection

Search Result 299, Processing Time 0.026 seconds

Control of oscillatory Czochralski convection by ACRT (ACRT에 의한 초크랄스키 대류진동 제어)

  • Choe, Jeong-Il;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2397-2408
    • /
    • 1996
  • A numerical study was made of the control of transient oscillatory flow modes in Czochralski convection. The reduction of temperature oscillation was achieved by changing the rotation rate of crystal rod, .OMEGA.$_{S}$=.OMEG $A_{S0}$(1+ $A_{S}$sin(2.pi. $f_{S}$/ $t_{p}$t)). The temporal behavior of oscillation flow was scrutinized over broad ranges of two parameters, i.e., the rotation amplitude( $A_{S}$.leq.0.5) and the nondimensional frequency (0.9.leq. $f_{S}$.leq.1.5). The mixed convection parameter was ranged 0.225.leq.Ra/PrR $e^{2}$.leq.0.929, which encompassed the buoyancy-and forced-dominant convection regimes. Computational results revealed that the temperature oscillations could be reduced effectively by a proper adjustment of the control parameters. The uniformity of temperature distribution near the crystal rod was examined. The control of oscillatory flow modes was also made for a realistic, low value of Pr.

Natural Convection Heat Transfer from a Horizontal Annulus with Spacers (격판을 가진 수평환상공간에서의 자연대류 열전달)

  • 이범철;정한식;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.153-160
    • /
    • 1989
  • A numerical and experimental study has been performed on natural convection heat transfer from a horizontal annulus with spacers. The mode of heat transfer in the annulus is changed from conduction to convection at Ra = 10$^{3}$. By increasing wall conductivity, mean Nusselt number is apparently increased at $K_{w}$/K$_{f}$ .leg. 48, but at /K$_{w}$/K$_{f}$ > 48, slightly increased for no spacers, and decreased for vertical spacers and horizontal spacers. The mean Nusselt number can be represented in an exponential function of Grashof number at all conditions. The characterics of natural convection heat transfer show similiarity for no spacers and vertical spacers but show difference for horizontal spacers. The presence of the horizontal spacers increased the convective heat transfer by an average 6 percent over that for the no forced cooling to outer cylinder. The maximum local Nusselt number appears at .theta. = 150.deg. in a conducting tube and .theta. = 30.deg. in an outer cylinder for vertical spacers, and appears at .theta. = 180.deg. in a conducting tube and .theta. = 0.deg. in an outer cylinder for horizontal spacers.spacers.

Silicon melt motion in a Czochralski crystal puller (쵸크랄스키 단결정 장치에서의 실리콘유동)

  • 이재희;이원식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.27-40
    • /
    • 1997
  • The heat in Czochralski method is transfered by all transport mechanisms such as convection, conduction and radiation and convection is caused by the temperature difference in the molden pool, the rotations of crystal or crucible and the difference of surface tension. This study delvelops the simulation model of Czochralski growth by using the finite difference method with fixed grids combined with new latent heat treatment model. The radiative heat transfer occured in the surfce of the system is treated by calculating the view factors among surface elements. The model shows that the flow is turbulent, therefore, turbulent modeling must be used to simulate the transport phenomena in the real system applied to 8" Si single crystal growth process. The effects of a cusp magnetic field imposed on the Czochralski silicon melt are studied by numerical analysis. The cusp magnetic field reduces the natural and forced convection due to the rotation of crystal and crucible very effectively. It is shown that the oxygen concentration distribution on the melt/crystal interface is sensitively controlled by the change of the magnetic field intensity. This provides an interesting way to tune the desired O concentration in the crystal during the crystal growing.

  • PDF

Solving a Nonlinear Inverse Convection Problem Using the Sequential Gradient Method

  • Lee, Woo-Il;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.710-719
    • /
    • 2002
  • This study investigates a nonlinear inverse convection problem for a laminar-forced convective flow between two parallel plates. The upper plate is exposed to unknown heat flux while the lower plate is insulated. The unknown heat flux is determined using temperature measured on the lower plate. The thermophysical properties of the fluid are temperature dependent, which renders the problem nonlinear. The sequential gradient method is applied to this nonlinear inverse problem in order to solve the problem efficiently. The function specification method is incorporated to stabilize the sequential estimation. The corresponding adjoint formalism is provided. Accuracy and stability have been examined for the proposed method with test cases. The tendency of deterministic error is investigated for several parameters. Stable solutions are achieved eve]1 with severely impaired measurement data.

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

Numerical Study on Combined Heat Transfer in NIR Dryer for Agricultural and Marine Products (근적외선 농수산물 건조기의 복합열전달특성에 관한 수치적 연구)

  • Choi, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.395-402
    • /
    • 2006
  • Mixed heat transfer in an indirected NIR (Near Infrared Ray) dry chamber was investigated numerical analysis. It is Important that the miked heat transfer effects on double parameters which the Reynolds number and the position of emit lamp. Reynolds number are based on the outer diameter of the cylinder range from 103 to $30{\times}105$. Four difference heat transfer regimes of behavior are apparent: forced convection and radiation on the outer surface of the cylinder, pure conduction, pure natural convection and radiation between lamp surface and inner surface of the cylinder. The temperature and flow patterns are illustrated by iso-contour lines for the double parameters. Also presented are results on the convective heat transfer flux and the radiative heat transfer flux as increased with Reynolds number.

A Numerical Study on Mixed Convection in Boundary Layer Flows over Inclined Surfaces (경사진 평판 주위에서 경계층유동의 혼합대류에 관한 연구)

  • 김동현;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.725-733
    • /
    • 1990
  • An analysis of laminar mixed convection flow adjacent to the inclined flat surface which is subjected to a uniform temperature in a uniform free stream is performed. Nonsimilar boundary layed equation are derived by using the mixed convection parameters such that smooth transition from the purely forced convection limit to the purely free convection limit is possible. The governing equations are solved by a finite difference method using the coupled box scheme of sixth order. Numerical results are presented for prandtl numbers of 0.7 and 7 with the angle of inclination ranging from 0 to 90 degree from the vertical. The velocity distributions for the buoyancy assisting flow exhibit a significant overshoot above the free stream value in the region of intense mixed convection and the velocity field is found to be more sensitive to the buoyancy effect than the temperature field. The separation point near the wall was obtained for the buoyancy opposing flow. The local Nusselt number increases for buoyancy assisting flow and decreases for opposing flow with increasing value of the local Grashoff number in the mixed convection parameter. For large Prandtl number, the Nusselt number and the friction factor decrease significantly near the separation point. Present numerical predictions are in good agreement with recent experimental results by Ramachandran.

Characteristics Maintenance Internal Temperature of Apple and Portable Low-Temperature Container by Using Phase Change Materials (잠열재를 이용한 이동식 저온 컨테이너 및 사과의 내부온도 유지특성)

  • Kwon, Ki-Hyun;Kim, Jong-Hoon;Jeong, Jin-Woung
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • By considering the storage temperatures of agricultural products, three types of PCMs $(K_1$, $K_2$, $K_3$) were developed to be used in temperature ranges of $0{\sim}5^{\circ}C$, $5{\sim}10^{\circ}C$ and $10{\sim}15^{\circ}C$, $K_1$ PCM for $0{\sim}5^{\circ}C$ was developed by mixture of $C_{14}H_{30}$ and soduim polyacrylate, and $K_2$ PCM for $5{\sim}10^{\circ}C$ and $K_3$ PCM for $10{\sim}15^{\circ}C$ were mixture of $C_{14}H_{30}$, $C_{18}H_{38}$ and soduim polyacrylate with different composition ratio. 'The target temperatures of cold chain system were set at $7^{\circ}C$, $13^{\circ}C$, and $17^{\circ}C$ with $K_{1-3}$, $K_{2-3}$ and $K_{3-1}$ PCMs, respectively. The times to reach the target temperatures in the storage chamber were 21 hours, 18 hours, and 61 hours with $K_1$, $K_2$, and $K_3$ PCMs, respectively. The performances of natural convection type and forced convection of the temperature controlled portable container were analyzed Apples were stored in the portable container of $5^{\circ}C$, and temperatures at surface and center were measured. The initial temperature of the apple was $25^{\circ}C$. The temperatures of apple at the surface and the center were $15^{\circ}C$ and $16^{\circ}C$, respectively, after 5 hours with natural convection type. However, the temperatures at the surface and the center were already reached to $7^{\circ}C$ within 1 hour with forced convection type. The forced convection type showed the better performance and the temperatures of portable container were maintained more than 15 hours.

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.