• Title/Summary/Keyword: Forced Oscillation Test

Search Result 19, Processing Time 0.028 seconds

강제진동 풍동시험을 통한 비행선의 동안정성 분석

  • Chang, Byeong-Hee;Ok, Ho-Nam;Lee, Yung-Gyo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • An airship is statically unstable, because it has no wing, comparatively small tail and large hull. Hence, an accurate prediction of dynamic stability is critical. In this study, dynamic stability data of the Mid-Size Airship is acquired through forced oscillation wind tests. The test was done in BAR LAMP which is Birhle Applied Research Inc's facility located in Germany. The test was composed with 16 static runs and 26 dynamic runs. As a result, dynamic characteristics of the airship depends on sideslip angle, angular rate and its direction as well as angle of attack. Generally, it is obtained that 3 directional moments have damping, but normal force, side force, and cross-derivatives are unstable. The dynamic derivatives are not sensitive to control surfaces, but have nonlinear dependency on sideslip angle.

  • PDF

On the Prediction of Inner Pressure for the Tank in Rolling Motion (동요하는 탱크의 내부 변동압력 추정에 관한 연구)

  • Lee, Seung-Keon;Sea, Young-seok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.459-464
    • /
    • 2003
  • The inner liquid pressure of an airtight tank in rolling motions is investigated by means of forced oscillation tests, and the simple method to estimate the inner liquid pressure is proposed. A rectangular solid tank, which is fully filled with water, was used in the forced oscillation test of rolling motion. The inner pressure variations in time were measured at several points on the inner walls of tank. Measured pressures are compared with the calculated ones, and estimation methods of the inner liquid pressure of the tank in rolling motion are studied based on the considerations of the origin of pressure.

Effect of the High Frequency Chest Wall Oscillation (HFCWO) on Pulmonary Function and Walking Ability in Stroke Patients

  • Kim, Beom-Ryong;Park, Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.50-54
    • /
    • 2017
  • Purpose: This investigation aimed to determine the effects of treadmill training (TT) and high frequency chest wall oscillation (HFCWO) on pulmonary function and walking ability in stroke patients as well as propose an exercise program to improve cardiovascular function. Methods: Twenty hemiplegic stroke patients were randomized to either the control group (CG) (n=10) or the experimental group (EG), which received TT and HFCWO (n=10). Pulmonary function was quantitated using patient forced vital capacity (FVC) and forced expiratory volume at one second (FEV1) while walking speed was assessed by the 10m walking test (10MWT). Further, walking endurance was determined utilizing the 6-minute walk test (6MWT). Subjects of the EG performed the study protocol for 60 minutes, five times a week for six weeks; CG patients did not participate in regular exercise. To determine significance for the differences observed before and after exercise, within-group and between-group comparisons were conducted utilizing paired and independent t-tests, respectively, with the level of significance set at ${\alpha}=0.05$. Results: Within-groups, significant differences were observed in both FVC and FEV1 (p<0.01) following completion of the study protocol. Further, between-group comparisons demonstrated significant differences in both FVC (p<0.05) and FEV1 (p<0.01). Post-exercise, significant changes in the 10MWT and 6MWT score were observed between the EG and CG (p<0.01). Further, statistically significant differences were observed in 6MWT scores between-groups (p<0.05). Conclusion: The TT and HFCWO effectively improved pulmonary function and walking ability in subjects with stroke. The proposed program can be applied to stroke patients as a useful therapy.

Experimental investigation on vortex induced forces of oscillating cylinder at high Reynolds number

  • Xu, Yuwang;Fu, Shixiao;Chen, Ying;Zhong, Qian;Fan, Dixia
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.167-180
    • /
    • 2013
  • Hydrodynamic characteristics of a bluff cylinder oscillating along transverse direction in steady flow were experimentally investigated at Reynolds number of $2{\times}10^5$. The effects of non-dimensional frequency, oscillating amplitude and Reynolds number on drag force, lift force and phase angle are studied. Vortex shedding mechanics is applied to explain the experimental results. The results show that explicit similarities exist for hydrodynamic characteristics of an oscillating cylinder in high and low Reynolds number within subcritical regime. Consequently, it is reasonable to utilize the test data at low Reynolds number to predict vortex induced vibration of risers in real sea state when the Reynolds numbers are in the same regime.

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.

Experimental investigation of towing- and course-stability of a FPSO towed by a tug-boat with lateral motion

  • Park, Seung Hyeon;Lee, Seung Jae;Lee, Sungwook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.12-23
    • /
    • 2021
  • In the conventional experiment to assess the towing operations, the towing stability of the towed vessel has been evaluated under the condition without lateral motion of the tug-boat. However, the tug-boats may have a lateral force to change the direction of the towed vessel. In this study, experiments have been conducted considering unsteady conditions in the towing system. First, a towing test system in a Circular Water Channel (CWC) using the conventional experimental method is built. Second, the towing characteristics of the towed vessel are investigated using the conventional method, and they are compared with other research results and stability discriminant criteria. Third, the lateral motion of the tug-boat was modeled as a sinusoidal motion using a forced oscillation device changing frequency and amplitude. Finally, the discussion is given in terms of both towing- and course-stability of the towed vessel according to the lateral motion of the tug-boat.

The Effect of Exercise on Pulmonary Function (운동이 폐기능에 미치는 영향)

  • Park, Jae-Seuk;Kim, Youn-Seup;Choi, Eun-Kyoung;Jee, Young-Koo;Lee, Kye-Young;Kim, Keun-Youl;Chun, Yong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.351-359
    • /
    • 1998
  • Background: The effects of exercise on pulmonary function are complex and have been the subject of many investigations. But, there has been disputes about the effect of exercise on spirometric parameters and there is no study about the effect of exercise on IOS(Impulse Oscillometry)parameters. IOS, a new method of pulmonary function test, is based on the relationship between the pressure and flow oscillation which is produced by applying sinusoidal pressure oscillation to the respiratory system via the mouth. Method: Fifty-nine young adults without respiratory symptoms were divided into three groups according to degree of exercise(hard exercise group: mean exercise time is over three hours per week at least for the last one month, light exercise group : between thirty minutes to three hours, nonexercise group : less than thirty minutes) and undertaken pulmonary function test(simple spirometry and IOS). Results: The effects of exercise on spirometric parameters; percentage of predictive value of forced vital capacity(FVC % pred) was higher in hard exercise group than nonexercise group(hard exercise group: $102.4{\pm}14.8$, nonexercise group: $93.7{\pm}9.9$, p=0.017), but there was no significant difference in percentage of predicted value of forced expiratory volume in one second(FEV 1 % pred) and percentage of predicted value of forced expiratory flow 50% (FEF 50% pred) between groups. The effects of exercise on IOS parameters: Reactance at 5Hz(X5) was significantly lower in hard exercise group than nonexercise group(hard exercise group: $-0.166{\pm}0.123hPa/1/s$, nonexercise group: $-0.093{\pm}0.036hPa/1/s$, p=0.006) but there was no significant difference in central resistance(Rc), peripheral resistance(Rp), resonance frequency(RF) and resistance at 5Hz, 20Hz between groups. Conclusion: Hard exercise increased FVC % pred on spirometric parameters and decreased reactance at 5Hz(X5) on IOS parameters.

  • PDF

Reference values for respiratory system impedance using impulse oscillometry in school-aged children in Korea (학동기 소아에서 impulse oscillometry system로 측정한 폐기능 정상치)

  • Wee, Young Sun;Kim, Hyoung Yun;Jung, Da Wun;Park, Hye Won;Shin, Yoon Ho;Han, Man Yong
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.9
    • /
    • pp.862-867
    • /
    • 2007
  • Purpose : The impulse oscillometry (IOS) is applicable to young children because it requires minimal cooperation and a non-invasive method to measure the mechanics of respiratory system. This study aimed to develop the reference values in school-aged children in Korea, using IOS which is a modification of forced oscillation technique (FOT). Methods : Measurements were performed in 92 previously untrained healthy children, aged 7 to 12 years old, using IOS. We analyzed the relationships between the data about their age, height, weight, body surface area (BSA), body mass index (BMI) and the result of IOS using the linear regression test. Results : The success rate of IOS was 92.4%. Stepwise multiple regression of resistance of respiratory system (Rrs) and reactance of respiratory system (Xrs) in natural form for age, height, weight, BSA, BMI showed that height was the most significant predictor and altogether of 5 variables explained the Rrs and Xrs most. Our regression equations at multiple frequencys were comparable to published reference values, especially about the Rrs obtained at 5 Hz. Conclusion : IOS is a feasible method to measure the respiratory resistance in untrained children. We got the reference values using IOS and it seems to be useful to diagnose a variety of respiratory diseases.

Study on the Measurement System of Behavior of a Slender Structure using an Underwater Camera which is applied in DOEB (심해공학수조에 적용되는 수중카메라를 이용한 세장체의 연속 거동 측정방법에 관한 연구)

  • Jung, Dong-Ho;Kwon, Yong-Ju;Park, Byeong-Won;Jung, Jae-Hwan;Choi, Jong-Su;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This study covers the selection of systems measuring the behaviour of the slender structure in the underwater environment and its performance assessment. From a comparison of an instrumentation system that can measure the continuous behaviour along the entire length of the slender structure, the underwater camera system is finally selected as the most appropriate semi-permanent measurement system for Deep-sea Ocean Engineering Basin of KRISO. An experiment on the rigid pipes for a basic performance evaluation of the underwater camera is conducted in this study. The motion of a top excited rigid pipe is measured with the utilization of the underwater camera system. The performance of the underwater camera is evaluated by comparing the movement of a pipe measured by the underwater camera with the measured input signals. Through the top excitation experiment for the slender structure, the real-time three-dimensional measurement of the underwater camera system is qualitatively evaluated in this case. The developed underwater camera system can apply to the system to measure dynamic behaviour of a slender structure and mooring line in Deep Ocean Engineering Basin.