• 제목/요약/키워드: Force-control shaking table

검색결과 29건 처리시간 0.026초

실시간 하이브리드 실험법을 이용한 동조액체기둥감쇠기가 설치된 구조물의 지진응답 제어성능 평가 (Performance Evaluation of Controlling Seismic Responses of a Building Structure with a Tuned Liquid Column Damper using the Real-Time Hybrid Testing Method)

  • 정희산;이성경;박은천;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.669-673
    • /
    • 2007
  • In this study, real-time hybrid test using a shaking table for the control performance evaluation of a U-shaped TLCD controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a U-shaped TLCD adopted as an experimental part was installed to reduceits response. At first, the force that is acting between a TLCD and building structure is measured from the load cell attached on shaking table and is fed-back to the computer to control the motion of shaking table. Then, the shaking table is so driven that the error between the interface acceleration computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the shaking table. The control efficiency of the TLCD used in this paper is experimentally confirmed by implementing this process of shaking table experiment on real-time.

  • PDF

실시간 하이브리드 실험법을 이용한 동조액체댐퍼가 설치된 건물의 진동제어 (Vibration Control of a Building Structure with a Tuned Liquid Damper Using Real-Time Hybrid Experimental Method)

  • 이성경;이상현;민경원;박은천;우성식;정란
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.256-263
    • /
    • 2006
  • In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF

힘-제어 진동대를 이용한 전단건물의 조화진동 (Harmonic Excitation of Shear Building with Force-Controlled Shaking Table)

  • 이상호
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.853-859
    • /
    • 2015
  • 진동대 실험 시 진동대와 구조물 사이에 발생하는 상호작용을 파악하기 위하여 1자유도 전단건물의 조화진동 실험을 전자기력으로 구동되는 힘-제어 진동대를 이용하여 수행하였다. 실험에서는 진동대와 전단건물의 수평방향 가속도를 측정하였으며, 실험 결과를 이해하기 위한 방법으로 전단건물의 진동대 실험을 조화하중이 작용하는 비구속 2자유도계로 이상화하였다. 이상화 된 이론모델의 운동방정식으로부터 전단건물과 진동대의 가속도를 구하였으며, 이들 가속도를 가진력에 대한 비로 나타낸 증폭계수와 진동대의 가속도 진폭에 대한 전단건물의 가속도 진폭의 비인 전달계수를 구하였으며, 이들 결과를 실험결과와 비교하여 진동대와 전단건물 사이에 발생하는 상호작용을 파악하였다.

The Vibration Performance Experiment of Tuned Liquid Damper and Tuned Liquid Column Damper

  • Kim Young-Moon;You Ki-Pyo;Cho Ji-Eun;Hong Dong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.795-805
    • /
    • 2006
  • Tuned Liquid damper and Tuned Liquid Column are kind of passive mechanical damper which relies on the sloshing of liquid in a rigid tank for suppressing structural vibrations. TLD and TLCD are attributable to several potential advantages - low costs ; easy to install in existing structures : effective even for small-amplitude vibrations. In this paper, the shaking table experiments were conducted to investigate the characteristics of water sloshing motion in TLD (rectangular, circular) and TLCD. The parameter obtained from the experiments were wave height, base shear force and energy dissipation. The shaking table experiments show that the liquid sloshing relies on amplitude of shaking table and frequency of tank. The TLCD was more effective control vibration than TLD.

실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 풍응답 제어성능평가 (Wind Response Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-Time Hybrid Shaking Table Testing Method)

  • 허재성;이성경;이상현;박은천;김홍진;조봉호;조지성;김동영;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.189-194
    • /
    • 2007
  • An experimental real-time hybrid method, which implements the wind response control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an wind-load input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

  • PDF

실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 진동제어 성능평가 (Vibration Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-time Hybrid Shaking Table Testing Method)

  • 허재성;이성경;박은천;이상현;김홍진;조지성;조봉호;민경원
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.485-495
    • /
    • 2008
  • An experimental real-time hybrid method, which implements the vibration control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and sinusoidal waves input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수 (Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper)

  • 민경원
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

Seismic test of modal control with direct output feedback for building structures

  • Lu, Lyan-Ywan
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.633-656
    • /
    • 2001
  • In this paper, modal control with direct output feedback is formulated in a systematic manner for easy implementation. Its application to the seismic protection of structural systems is verified by a shaking table test, which involves a full-scale building model and an active bracing system as the control device. Two modal control cases, namely, one full-state feedback and one direct output feedback control were tested and compared. The experimental result shows that in mitigating the seismic response of building structures, modal control with direct output feedback can be as effective and efficient as that with full-state feedback control. For practical concerns, the control performance of the proposed method in the presence of sensor noise and stiffness modeling error was also investigated. The numerical result shows that although the control force may be increased, the maximum floor displacements of the controlled structure are very insensitive to sensor noise and modeling error.

실시간 하이브리드 진동대 실험법을 이용한 TLD 제어성능의 실험적 검증 (Experimental Verification for the Control Performance of a TLD by Using Real-Time Hybrid Shaking Table Testing Method)

  • 이성경;박은천;이상현;정란;우성식;민경원
    • 한국전산구조공학회논문집
    • /
    • 제19권4호
    • /
    • pp.419-427
    • /
    • 2006
  • 본 논문에서는, 동조액체감쇠기(이하 TLD)만을 실험적 부분구조로 이용하여 TLD가 설치된 건축구조물의 지진 응답 제어효과를 평가하기 위한 실시간 하이브리드 실험법을 제안하고 진동대 실험을 통해 실험적으로 규명한다. 제안된 실험법에서, TLD가 설치된 전체구조물은 상부의 TLD와 하부의 구조물 부분으로 각각 실험적 그리고 수치해석적 부분구조로 나누어진다. 이때 부분구조 사이의 경계면에서 작용하는 하중 또는, TLD에 의한 제어력은 진동대에 설치된 전단형 로드셀에 의해 계측되며 진동대는, 계측된 경계면에서의 제어력이 상부에 작용하고 또한 동시에 기초에 지진하중이 작용하는 수치해석적 부분구조로부터 계산된 응답으로, 상부에 설치된 TLD를 가진하게 된다. 제안된 실험법에 의한 결과와 TLD와 건물모델 모두를 제작하여 실험하는 기존의 방법에 의한 실험 결과들은 서로 잘 일치하며, 이로써 본 논문에서 제안된 실험법을 이용하여 TLD의 제어성능을 손쉽게 평가 할 수 있음을 알 수 있다.

하이브리드 실험법을 이용한 TLD가 설치된 건물의 지진응답 제어 (Earthquake Response Control of a Building with a Tuned Liquid Damper Using Hybrid Experiment Method)

  • 이성경;이상현;민경원;박은천;우성식;정란;윤경조
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.527-534
    • /
    • 2006
  • A real-time hybrid method, in which the experimental implementation and the numerical computation of a structure are simultaneously carried out in real-time and combined on-line, has been used as a dynamic testing technique of structure to investigate its dynamic behaviors. In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF