• 제목/요약/키워드: Force measurement

검색결과 1,623건 처리시간 0.029초

Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope with Uncertainty Evaluation

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.18-22
    • /
    • 2008
  • The pitch and orthogonality of two-dimensional (2-D) gratings were measured using a metrological atomic force microscope (MAFM), and the measurement uncertainty was analyzed. Gratings are typical standard devices for the calibration of precision microscopes, Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2-D gratings, it is important to certify the pitch and orthogonality of such gratings accurately for nanometrology. In the measurement of 2-D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme is required to overcome limitations such as thermal drift and slow scan speed. Two types of 2-D gratings with nominal pitches of 300 and 1000 nm were measured using line scans to determine the pitch measurement in each direction. The expanded uncertainties (k = 2) of the measured pitch values were less than 0.2 and 0.4 nm for each specimen, and the measured orthogonality values were less than $0.09^{\circ}$ and $0.05^{\circ}$, respectively. The experimental results measured using the MAFM and optical diffractometer agreed closely within the expanded uncertainty of the MAFM. We also propose an additional scheme for measuring 2-D gratings to increase the accuracy of calculated peak positions, which will be the subject of future study.

비접촉식 센서를 사용한 형상 측정 연구 (A Study of Form Measurement using Noncontact Sensor)

  • 송정섭;황윤호;배종일;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.407-410
    • /
    • 1995
  • Many researches on measurement technology has been made and developed by various methods. Considering the measurement environment with cutting fluid, coolant and the like, contact type measurement methods are mostly used. But contact measurement method has measuring force and so the sensing head becomes worn. By these reasons, we considered sensors not influenced by the former fluid and so can acquire accrate measured values using error compensation due to temperature and vibration. For this purpose, eddy current sensors and Extended kalman Filter Algorithm for processing measured data has been used. In this paper, we present new technology that can be used for measuring workpiece with previous bad environment using direct method and comparison measurement method. We used cylindrical workpieces which were produced by grinding machine for the target.

  • PDF

기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정 (Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever)

  • 제영완;정구현
    • Tribology and Lubricants
    • /
    • 제29권3호
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.

수정된 RLS 기반으로 관절 토크 센서를 이용한 로봇에 가해진 외부 힘 예측 및 펙인홀 작업 구현 (External Force Estimation by Modifying RLS using Joint Torque Sensor for Peg-in-Hole Assembly Operation)

  • 정유석;이철수
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.55-62
    • /
    • 2018
  • In this paper, a method for estimation of external force on an end-effector using joint torque sensor is proposed. The method is based on portion of measure torque caused by external force. Due to noise in the torque measurement data from the torque sensor, a recursive least-square estimation algorithm is used to ensure a smoother estimation of the external force data. However it is inevitable to create a delay for the sensor to detect the external force. In order to reduce the delay, modified recursive least-square is proposed. The performance of the proposed estimation method is evaluated in an experiment on a developed six-degree-of-freedom robot. By using NI DAQ device and Labview, the robot control, data acquisition and The experimental results output are processed in real time. By using proposed modified RLS, the delay to estimate the external force with the RLS is reduced by 54.9%. As an experimental result, the difference of the actual external force and the estimated external force is 4.11% with an included angle of $5.04^{\circ}$ while in dynamic state. This result shows that this method allows joint torque sensors to be used instead of commonly used external sensory system such as F/T sensors.

Quantitative Comparison of Acupuncture Needle Force Generation According to Diameter

  • Lee, YeonSun;Bong, SungMin;Kim, Eun Jung;Lee, Seung Deok;Jung, Chan Yung
    • Journal of Acupuncture Research
    • /
    • 제35권4호
    • /
    • pp.238-243
    • /
    • 2018
  • Background: Various factors can alter the efficacy of acupuncture treatment, such as the location of points, manipulations, depth of insertion, needle retention time, and needle type. In this study, the effect of needle diameter on the efficacy of acupuncture treatment was quantitatively evaluated. Methods: Five acupuncture needles of different diameters used in clinical practice were compared. Force on the porcine tissue phantom was measured using a sensor. Lifting-thrusting and twisting-rotating movements were performed using a needle insertion-measurement system. After repeated measurements, force magnitude was calculated and compared. Following this, we correlated needle diameter and force magnitude during lifting-thrusting and twisting-rotating movements. Results: The force magnitude was significantly altered between needle diameters during lifting-thrusting movements, as shown by a significant positive correlation between needle diameter and force magnitude. In contrast, there was no difference in force magnitude with different needle diameters during twisting-rotating movements. Conclusion: Needle diameter can significantly affect stimuli and force magnitude dependent upon the type of manipulation. Research into the effect of other needle type characteristics and stimulation method is necessary to fully elucidate the role of acupuncture needle choice in treatment efficacy.

편심하중 요소를 활용한 방수형 다분력 검력계 개발 (Development of a Multi-Component Waterproof Type Force Sensor Devised with Column Elements Under Eccentric Load)

  • 김효철;신창환;유성선;함연재
    • 대한조선학회논문집
    • /
    • 제61권3호
    • /
    • pp.200-207
    • /
    • 2024
  • A multi-component force sensor has been developed to measure force and moment components in high-speed flow media for submerged models. The size of the test model is determined based on the Reynolds number of the model at the test speed and expected blockage effect. A two-component force sensor unit has been created by assembling pairs of column elements arranged symmetrically under an eccentric load. The six-component force sensor is constructed with symmetric arrangements of two-component force sensor units in a rectangular plane. The signals generated from the strain gauges attached to the surface of the elements can be converted into force signals. The performance of the waterproof six-component force sensor has been evaluated through calibration. A simplified interference decomposition procedure has been introduced to increase the accuracy of measurement.

단축 인장에 의한 SU-8박막의 기계적 물성 측정 (Measurement of mechanical properties of SU-8 thin film by tensile testing)

  • 백동천;박태상;이순복;이낙규
    • 반도체디스플레이기술학회지
    • /
    • 제3권2호
    • /
    • pp.23-26
    • /
    • 2004
  • Thin film is one of the most general structures used in micro-electro-mechanical systems (MEMS). To measure the mechanical properties of SU-8 film, tensile testing was adopted which offers not only elastic modulus but also yield strength and plastic deformation by load-displacement curve. Tensile testing system was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

Development of Prototype Stylus Prototype for Large Optics Testing

  • Yang, Ho-Soon;Walker, David
    • Journal of the Optical Society of Korea
    • /
    • 제5권2호
    • /
    • pp.60-66
    • /
    • 2001
  • The authors discuss a prototype stylus profilometer designed to measure large optics. It consists of a low contact force type probe system, laser reference system, interferometric distance measurement system, and horizontal driving system. The probe contacts the surface ; the height and the horizontal distances of the measurement points are measured by the interferometer. The freely propagated laser beam provides the reference line during the measurement. The developed stylus profilometry shows only $\pm$60 nm of P-V error for the 157 mm diameter spherical mirror.

초음파 음탄성효과를 이용한 고장력 볼트의 축력측정정도 향상에 관한 연구 (A Study on the Advance of Measuring Accuracy of High Tension Bolt Axial Force Using Ultrasonic Acoustoelasticity Effects)

  • 김희송;오환교
    • 비파괴검사학회지
    • /
    • 제12권4호
    • /
    • pp.26-31
    • /
    • 1993
  • In this paper, the axial force of high tension bolt is measured by using ultrasonic wave. In the case of the different materials the conclusion obtained are as follows : (1) The relation of the material quality of each high tension bolt and form(diameter or section area), and yield axial force can be observed. (2) As 0.1 is devided by the apparent elongation the measurement accuracy of high tension bolt can be achived. Also, it is founded that the Joint axial force of high tension bolt is determined by the yield force.

  • PDF

원통 플런지 연삭시 연삭력에 관한 실험적연구 (Monitoring of Grinding Force in Plunge Grinding Process)

  • 박종판;박철우;이상조
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.881-894
    • /
    • 1999
  • Cylindrical plunge grinding is widely used for final machining process of precision parts such as automobile, aircraft, measurement units. But in order to make parts which have high precision accuracy and high surface integrity, it is necessary to consider grinding characteristics due to accumulation phenomena of grinding wheel in plunge grinding process. In this study, in order to examine closely plunge grinding process, grinding power, grinding force, real depth of cut are monitored in transient state, steady state and spark out state. As the result, it is shown that grinding power and force are affected by dressing condition, depth of cut and speed ratio and that there exist threshold grinding force and it also affected by dressing condition. Also considered effects of grinding conditions on surface roughness and roundness of workpiece