• Title/Summary/Keyword: Force measurement

Search Result 1,614, Processing Time 0.025 seconds

Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope with Uncertainty Evaluation

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.18-22
    • /
    • 2008
  • The pitch and orthogonality of two-dimensional (2-D) gratings were measured using a metrological atomic force microscope (MAFM), and the measurement uncertainty was analyzed. Gratings are typical standard devices for the calibration of precision microscopes, Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2-D gratings, it is important to certify the pitch and orthogonality of such gratings accurately for nanometrology. In the measurement of 2-D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme is required to overcome limitations such as thermal drift and slow scan speed. Two types of 2-D gratings with nominal pitches of 300 and 1000 nm were measured using line scans to determine the pitch measurement in each direction. The expanded uncertainties (k = 2) of the measured pitch values were less than 0.2 and 0.4 nm for each specimen, and the measured orthogonality values were less than $0.09^{\circ}$ and $0.05^{\circ}$, respectively. The experimental results measured using the MAFM and optical diffractometer agreed closely within the expanded uncertainty of the MAFM. We also propose an additional scheme for measuring 2-D gratings to increase the accuracy of calculated peak positions, which will be the subject of future study.

A Study of Form Measurement using Noncontact Sensor (비접촉식 센서를 사용한 형상 측정 연구)

  • 송정섭;황윤호;배종일;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.407-410
    • /
    • 1995
  • Many researches on measurement technology has been made and developed by various methods. Considering the measurement environment with cutting fluid, coolant and the like, contact type measurement methods are mostly used. But contact measurement method has measuring force and so the sensing head becomes worn. By these reasons, we considered sensors not influenced by the former fluid and so can acquire accrate measured values using error compensation due to temperature and vibration. For this purpose, eddy current sensors and Extended kalman Filter Algorithm for processing measured data has been used. In this paper, we present new technology that can be used for measuring workpiece with previous bad environment using direct method and comparison measurement method. We used cylindrical workpieces which were produced by grinding machine for the target.

  • PDF

Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever (기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정)

  • Je, Youngwan;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.

External Force Estimation by Modifying RLS using Joint Torque Sensor for Peg-in-Hole Assembly Operation (수정된 RLS 기반으로 관절 토크 센서를 이용한 로봇에 가해진 외부 힘 예측 및 펙인홀 작업 구현)

  • Jeong, Yoo-Seok;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In this paper, a method for estimation of external force on an end-effector using joint torque sensor is proposed. The method is based on portion of measure torque caused by external force. Due to noise in the torque measurement data from the torque sensor, a recursive least-square estimation algorithm is used to ensure a smoother estimation of the external force data. However it is inevitable to create a delay for the sensor to detect the external force. In order to reduce the delay, modified recursive least-square is proposed. The performance of the proposed estimation method is evaluated in an experiment on a developed six-degree-of-freedom robot. By using NI DAQ device and Labview, the robot control, data acquisition and The experimental results output are processed in real time. By using proposed modified RLS, the delay to estimate the external force with the RLS is reduced by 54.9%. As an experimental result, the difference of the actual external force and the estimated external force is 4.11% with an included angle of $5.04^{\circ}$ while in dynamic state. This result shows that this method allows joint torque sensors to be used instead of commonly used external sensory system such as F/T sensors.

Quantitative Comparison of Acupuncture Needle Force Generation According to Diameter

  • Lee, YeonSun;Bong, SungMin;Kim, Eun Jung;Lee, Seung Deok;Jung, Chan Yung
    • Journal of Acupuncture Research
    • /
    • v.35 no.4
    • /
    • pp.238-243
    • /
    • 2018
  • Background: Various factors can alter the efficacy of acupuncture treatment, such as the location of points, manipulations, depth of insertion, needle retention time, and needle type. In this study, the effect of needle diameter on the efficacy of acupuncture treatment was quantitatively evaluated. Methods: Five acupuncture needles of different diameters used in clinical practice were compared. Force on the porcine tissue phantom was measured using a sensor. Lifting-thrusting and twisting-rotating movements were performed using a needle insertion-measurement system. After repeated measurements, force magnitude was calculated and compared. Following this, we correlated needle diameter and force magnitude during lifting-thrusting and twisting-rotating movements. Results: The force magnitude was significantly altered between needle diameters during lifting-thrusting movements, as shown by a significant positive correlation between needle diameter and force magnitude. In contrast, there was no difference in force magnitude with different needle diameters during twisting-rotating movements. Conclusion: Needle diameter can significantly affect stimuli and force magnitude dependent upon the type of manipulation. Research into the effect of other needle type characteristics and stimulation method is necessary to fully elucidate the role of acupuncture needle choice in treatment efficacy.

Measurement of mechanical properties of SU-8 thin film by tensile testing (단축 인장에 의한 SU-8박막의 기계적 물성 측정)

  • 백동천;박태상;이순복;이낙규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.23-26
    • /
    • 2004
  • Thin film is one of the most general structures used in micro-electro-mechanical systems (MEMS). To measure the mechanical properties of SU-8 film, tensile testing was adopted which offers not only elastic modulus but also yield strength and plastic deformation by load-displacement curve. Tensile testing system was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

Development of Prototype Stylus Prototype for Large Optics Testing

  • Yang, Ho-Soon;Walker, David
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.60-66
    • /
    • 2001
  • The authors discuss a prototype stylus profilometer designed to measure large optics. It consists of a low contact force type probe system, laser reference system, interferometric distance measurement system, and horizontal driving system. The probe contacts the surface ; the height and the horizontal distances of the measurement points are measured by the interferometer. The freely propagated laser beam provides the reference line during the measurement. The developed stylus profilometry shows only $\pm$60 nm of P-V error for the 157 mm diameter spherical mirror.

A Study on the Advance of Measuring Accuracy of High Tension Bolt Axial Force Using Ultrasonic Acoustoelasticity Effects (초음파 음탄성효과를 이용한 고장력 볼트의 축력측정정도 향상에 관한 연구)

  • Kim, H.S.;Oh, H.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.4
    • /
    • pp.26-31
    • /
    • 1993
  • In this paper, the axial force of high tension bolt is measured by using ultrasonic wave. In the case of the different materials the conclusion obtained are as follows : (1) The relation of the material quality of each high tension bolt and form(diameter or section area), and yield axial force can be observed. (2) As 0.1 is devided by the apparent elongation the measurement accuracy of high tension bolt can be achived. Also, it is founded that the Joint axial force of high tension bolt is determined by the yield force.

  • PDF

Monitoring of Grinding Force in Plunge Grinding Process (원통 플런지 연삭시 연삭력에 관한 실험적연구)

  • Park, Jong-Chan;Park, Cheol-Woo;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.881-894
    • /
    • 1999
  • Cylindrical plunge grinding is widely used for final machining process of precision parts such as automobile, aircraft, measurement units. But in order to make parts which have high precision accuracy and high surface integrity, it is necessary to consider grinding characteristics due to accumulation phenomena of grinding wheel in plunge grinding process. In this study, in order to examine closely plunge grinding process, grinding power, grinding force, real depth of cut are monitored in transient state, steady state and spark out state. As the result, it is shown that grinding power and force are affected by dressing condition, depth of cut and speed ratio and that there exist threshold grinding force and it also affected by dressing condition. Also considered effects of grinding conditions on surface roughness and roundness of workpiece

Development of an Ultra Precision Machining System Using a Force and Displacement Sensing Module (힘 및 변위 감지기구를 적용한 초정밀 가공시스템 개발)

  • Bang, Jin-Hyeok;Kwon, Ki-Hwan;Cho, Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.42-50
    • /
    • 2005
  • This paper presents an ultra precision machining system using a high sensitive force sensing module to measure machining forces and penetration displacement in a tip-based nanopatterning. The force sensing module utilizes a leaf spring mechanism and a capacitive displacement sensor and it has been designed to provide a measuring range from 80 ${\mu}N$ to 8 N. This force sensing module is mounted on a PZT driven in-feed motion stage with 1 nm resolution. The sample can be moved by X-Y scanning motion stage with 5 nm resolution. In nano indentation experiments and patterning experiments, the machining forces were controlled and monitored by the force sensing module. Then, the patterned samples were measured by AFM. Experimental results demonstrated that the developed system can be used as an effective device in nano indentation and nanopatterning operation.