• Title/Summary/Keyword: Force component

Search Result 701, Processing Time 0.024 seconds

Measurement and Testing System (측정 및 시험시스템(M&TS))

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2005.11a
    • /
    • pp.382-388
    • /
    • 2005
  • This paper has briefly explained the various measurement and testing system which is an Important component of modern quality and process improvement activities. This paper deals with precision and force measurement , NDT, and MSA.

  • PDF

Fault Diagnosis of Roll Shape Under the Speed Variation in Hot Rolling Mill

  • Lee, Chang-Woo;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1410-1417
    • /
    • 2006
  • The metal processing system usually consists of various components such like motors, work rolls, backup rolls, idle rolls, sensors, etc. Even a simple fault in a single component in the system may cause a serious damage on the final product. It is therefore necessary to diagnose the faults of the components to detect and prevent system failure. Especially, the defects in a work roll are critical to the quality of strip. It is especially difficult to detect faults of a roll by using the existing frequency analysis method if the speed of the roll is changing. In this study, a new diagnosis method for roll eccentricity under the roll speed changes was developed. The new method was induced from analyzing the rolling mechanism by using rolling force models, radius-speed relationship, and measured rolling force, etc. Simulation results by using the field data show that the proposed method is very useful.

Grinding Wheel Life in Surface Grinding (평면연삭에서의 연삭수명 평가)

  • Choi, S.S.;Koo, Y.;Heo, J.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.101-108
    • /
    • 2002
  • In the grinding process, the degree of the sharpness in wheel gram affects the surface roughness and the dimensional accuracy. If a wheel with dull grains is used, the grinding force will be increased and the surface roughness deteriorated. To produce a precision component, the magnitude of parameters related to the wear amount of a grinding wheel has to be limited. In this study, a variation of the grinding force and the surface roughness were measured to seek the machining characteristics of the W A and CBN wheels. From the wear amount of the grinding wheel and the removal rate of workpiece, the grinding ratio was calculated. And also the wheel life was determined at a rapid decreasing point of the grinding ratio. The difference between the surface of wheel-workpiece before grinding and after wheel life was clearly verified with a microscopic photo.

  • PDF

Experimental study on the Sealing Force of NBR O-Ring with high Temperature (고온조건에서 NBR O-링 밀봉력에 관한 실험적 연구)

  • Kim Dohyun;Kang Hyunjoon;Kim Chungkyun;Ko Youngbae
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.209-212
    • /
    • 2004
  • The O-ring seal is a usual component part in various mechanical apparatuses for sealing that makes efficient performance of the equipments. The sealing performance of 0-ring is effected in environments of the O-ring seal, like that applied pressures, working temperatures, interferences and materials. In this paper, an pressurized, NBR O-ring is calculated by experimental methods and analysed numerically using the MARC finite element program. The calculated experimental and FEM results showed that the Contact force O-ring decreases as a function of temperature.

  • PDF

The Surface Tension Components of Mixed Surfactant Solutions (혼합계면활성제 용액의 표면장력 성분)

  • 정혜원;윤혜신
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.690-696
    • /
    • 1996
  • In order to study the affect of surfactants on the soil removal, the dispersion and polar force components of surface tension for surfactant solutions (such as LAS, AS, AOS, AES, AE) were calculated using extended Fowkes equation. The contact angles on paraffin and surface tension of surfactant solutions were measured. Cmcs of LAS, AS, AES and AE were below the concentration of 0.05%, but the cmc of AOS was between 0.05% and 0.1%. The surface tension of AE was lowest but the dispersion force component was greastest. Total surface tension of every mixed anionic surfactant was lower than that of single surfactants, and the dispersion force components were almost decreased. The addition of sodium carbonate to the sufactant solutions decreased the surface tension, and the surface tensions of surfactant solutions were lowered after washing.

  • PDF

A Study on the Stability of Chucking System for Machine Tools (공작기계용 Chucking System의 안정성에 관한 연구)

  • 박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.135-142
    • /
    • 1998
  • The performances of cutting process is mostly affected by the characteristics of closed loop system constructed with machine tool structure, work piece and tools. The chucking system is very important component in this system to hold work piece correctly in various static and dynamic load condition. Therefore, chucking force and accuracy must be considered carefully, from these reason, this paper describes the stability of chucking system which preserve high stiffness and accuracy of machine tool system.

  • PDF

Effectiveness of a Heat Transfer Characteristics of an Auxiliary Chamber for Performance of an Air Spring (보조용기의 열전달특성이 공기스프링의 성능에 미치는 영향)

  • Jang, Ji-Seong
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • The air spring is used widely because of the easy change of spring constant, and, a superior vibration and shock insulation performance. Among the apparatus using the merits of that, the air spring connected an auxiliary chamber has been developed and used as a component of suspension system for an automobile and a railroad car. The purpose of this study is to suggest a design method reflecting heat transfer effect for an air spring system connected auxiliary chamber. In order to do so, this study investigates change of reaction force along with variations in heat transfer coefficient, and, analyzes an effectiveness of a heat transfer characteristics of an auxiliary chamber for external force attenuation characteristics and impedance characteristics of an air spring connected an auxiliary chamber.

Tool Material Dependence of Hard Turning on The Surface Quality

  • Park, Young-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents an experimental study of the effect of cutting tool materials on surface quality when turning hardened steels. Machining tests on a lathe are performed using polycrystalline cubic boron nitride (PCBN) and ceramic tools at various cutting conditions without coolant. From the experiments, it is observed that the radial force is the largest force component regardless the type of tool used. The specific cutting energy for the hard turning is estimated to be considerably smaller than the specific grinding energy. It is also found that cutting force and surface roughness with the PCBN tools are higher and better than those with the ceramic tools under the same cutting condition. It is due that the PCBN tools transfer the generated heat more effectively than the ceramic tools due to their higher thermal conductivity. The optimal cutting conditions for the best surface quality are selected by using an orthogonal array concept.

Design and Fabrication of Six-Degree of Freedom Piezoresistive Turbulent Water Flow Sensor

  • Dao, Dzung Viet;Toriyama, Toshiyuki;Wells, John;Sugiyama, Susumu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.191-199
    • /
    • 2002
  • This paper presents the design concept, theoretical investigation, and fabrication of a six-degree of freedom (6-DOF) turbulent flow micro sensor utilizing the piezoresistive effect in silicon. Unlike other flow sensors, which typically measure just one component of wall shear stress, the proposed sensor can independently detect six components of force and moment on a test particle in a turbulent flow. By combining conventional and four-terminal piezoresistors in Si (111), and arranging them suitably on the sensing area, the total number of piezoresistors used in this sensing chip is only eighteen, much fewer than the forty eight piezoresistors of the prior art piezoresistive 6-DOF force sensor.