• Title/Summary/Keyword: Force by the wind

Search Result 613, Processing Time 0.028 seconds

Distribution of Wind Force Coefficients on the Single-span Arched House (아치형 단동하우스의 풍력계수 분포에 관한 연구)

  • 이석건;이현우
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.28-36
    • /
    • 1992
  • The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on e single-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated by using the experimental data. The results obtained are as follows: 1. When the wind direction was normal to the wall, the maximum positive wind pressure along the height of the wall occurred approximately at two-thirds of the wall height because of the effects of boundary layer flow. 2. When the wind direction was 30$^{\circ}$ to the wall, the maximum positive wind force occurred at the windward edge of the wall. When the wind direction was parallel to the wall, the maximum negative wind force occurred at the windward edge of the wall. 3. The maximum negative wind force along the width of the roof appeared around the width ratio, 0.4, and that along the length of the roof appeared around the length ratio, 0.5. 4. According to the results of the mean wind force coefficients analysis, the maximum negative wind force occurred on the roof at the wind direction of 30$^{\circ}$. 5. The wind forces at the wind direction of 30$^{\circ}$ instead of 0$^{\circ}$ are recommended in the structural design of supports for a house. 6. To prevent partial damage of a house structure by wind forces, the local wind forces should be considered to the structural design of a house.

  • PDF

An Analysis of Wind Force Coefficient Distributions for Optimum Design of Single-Span Arched Greenhouse (아치형 단동온실의 최적설계를 위한 풍력계수분포도의 분석)

  • 이석건;이현우;권무남
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • One of the most destructive forces around greenhouses is wind. Wind loads can be obtained by multiplying velocity pressure by dimensionless wind force coefficient. Generally, wind force coefficients can be determined by wind tunnel experiments. The wind force coefficient distribution on a single - span arched greenhouse was estimated using experimental data and compared with reported values from various countries. The results obtained are as follows : 1. The coefficients obtained from this study agree with the values proposed by G. L. Nelson except about 0.5 of difference in the middle region of roof section. This discrepancy is mainly attributed to the dissimilarity of experimental conditions (or wind tunnel test such as Reynolds number, type of terrain, surface roughness of model, location of the lapping and measuring methods. 2. Considering that the wind force coefficients are varied along the height of a wall at wind direction perpendicular to wall, structural analysis using subdivided wind force coefficient distribution is more resonable for wall. 3. It is recommendable that wind force coefficient distribution on a roof should take more subdivision than the existing four equal divisions for more accurate structural design. 4. Structural design using wind forces close to real values is more advantageous in safety and expense.

  • PDF

An Analysis of Wind Force Coefficient Distributions for Optimum Design of Multi-Span Arched Greenhouses (아치형 연동온실의 최적설계를 위한 풍력계수분포도의 분석)

  • 이현우;이석진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.2
    • /
    • pp.145-151
    • /
    • 1996
  • Wind force coefficients of multi-span arched greenhouses with respect to wind direction of $0^{\circ}$ and $30^{\circ}$ were estimated to give more reasonable coefficient. The conventional and subdivided division types of wind force coefficient distribution diagrams were constructed by using the wind tunnel experimental data. Bending moments on the greenhouses were determined through structural analysis using obtained wind force coefficients, and were analyzed. Because actual wind pressure values on a face of greenhouse varied with locations, the more divisions of wind force coefficient distribution were subdivided, the better distribution type was coincided with actual state. In order to calculate the more accurate section force occurred on the arched greenhouse by the wind loads, it was recommendable that the wind force coefficient distribution should take more subdivision type. The maximum bending moment at the multi-span greenhouse frame at wind direction of $30^{\circ}$ was greater than that at O。, therefore the wind force coefficient at inclined wind direction to the wall was needed to be considered for the multi-span greenhouse structural design.

  • PDF

Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests

  • Liang, Shuguo;Zou, Lianghao;Wang, Dahai;Huang, Guoqing
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.565-583
    • /
    • 2014
  • Using synchronous surface pressures from the wind tunnel test, the three dimensional wind load models of high-rise buildings are established. Furthermore, the internal force responses of symmetric high-rise buildings in along-wind, across-wind and torsional directions are evaluated based on mode acceleration method, which expresses the restoring force as the summation of quasi-static force and inertia force components. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher modes can be considered, of symmetric high-rise buildings in along-wind, across-wind and torsional directions are deduced based on internal forces equivalence. Finally the equivalent static wind loads of an actual symmetric high-rise building are obtained by this method, and compared with the along-wind equivalent static wind loads obtained by China National Standard.

Analysis of Offshore Wind Tower against Impulsive Breaking Wave Force by P-Y Curve

  • Kim, Nam-Hyeong;Koh, Myung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.385-391
    • /
    • 2015
  • In offshore, various external forces such as wind force, tidal current and impulsive breaking wave force act on offshore wind tower. Among these forces, impulsive breaking wave force is especially more powerful than other forces. Therefore, various studies on impulsive breaking wave forces have been carried out, but the soil reaction are incomplete. In this study, the p-y curve is used to calculate the soil reaction acting on the offshore wind tower when an impulsive breaking wave force occurs by typhoon. The calculation of offshore wind tower against impulsive breaking wave force is applied for the multi-layered soil. The results obtained in this study show that although the same wave height is applied, the soil reaction generated by impulsive breaking wave force is greater than the soil reaction generated by wave force.

The Wind Load Evaluation on Building Considering Vertical Profile of Fluctuating Wind Force (변동풍력의 연직분포를 고려한 건축물의 풍하중 평가)

  • Ryu, Hye-Jin;Shin, Dong-Hyeon;Ha, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.157-164
    • /
    • 2019
  • The wind tunnel test makes it possible to predict the wind loads for the wind resistant design. There are many methods to evaluate wind loads from data obtained from the wind tunnel test and these methods have advantages and disadvantages. In this study, two of these methods were analyzed and compared. One is the wind load evaluation method by fluctuating displacement and the other is the wind load evaluation method considering vertical profile of fluctuating wind force. The former method is evaluated as the sum of the mean wind load of the average wind force and the maximum value of the fluctuating wind load. The latter method is evaluated as the sum of the mean wind load and maximum value of the background wind load, and the maximum value of the resonant wind load. Two methods were applied to the wind tunnel test to compare the evaluated wind loads according to the two methods, with a maximum difference of about 1.2 times. The wind load evaluated by the method considering vertical profile of the fluctuating wind force (VPFWF) was larger than the wind load evaluated by the method by fluctuating displacement (FD). Especially, the difference of the wind load according to the two methods is large in the lower part of the building and the wind load is reversed at a specific height of the building. VPFWF of evaluating resonant wind loads and background wind loads separately is more reasonable.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Study on the P-Y Curve around the Mono-pile Foundation of Offshore Wind Turbine by Impulsive Breaking Wave Force

  • Go, Myeongjin;Kim, Namhyeong;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.253-254
    • /
    • 2014
  • In offshore, various external forces such as wind force, wave force and impulsive breaking wave force act on offshore structures. Many researches about this forces are published. Kim and Cao(2008) published researche on wave force of vertical cylinder. Kim and Go(2013) performed research on the subgrade reaction by external forces. Among this forces, impulsive breaking force is more massive than other forces, especially. Therefore, the studies about impulsive breaking wave forces have been carried out. Chun and Shim(1999) analyzed dynamic behavior of cylindrical pile subjected to impulsive breaking wave force. In this study, when the impulsive breaking wave force acts on the offshore wind turbine, the subgrade reaction acting on the mono-pile of the offshore wind turbine is calculated by p-y curve. The calculation is carried out to the multi-layered.

  • PDF

Wind Load Combinations Including Torsion for Rectangular Medium-rise Buildings

  • Stathopoulos, T.;Elsharawy, M.;Galal, K.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.245-255
    • /
    • 2013
  • This paper presents the results of a set of wind tunnel tests carried out to examine wind-induced overall structural loads on rectangular medium-rise buildings. Emphasis was directed towards torsion and its correlation with peak shear forces in transverse and longitudinal directions. Two building models with the same horizontal dimensions but different gabled-roof angles ($0^{\circ}C$ and $45^{\circ}C$) were tested at different full-scale equivalent eave heights (20, 30, 40, 50, and 60 m) in open terrain exposure for all wind directions (every $15^{\circ}C$). Wind-induced pressures were integrated over building surfaces and results were obtained for along-wind force, across-wind force, and torsional moment. Maximum wind force component was given along with the other simultaneously-observed wind force components normalized by the overall peak. The study found that for flat-roofed buildings maximum torsion for winds in transverse direction is associated with 80% of the overall shear force perpendicular to the longer horizontal building dimension; and 45% of the maximum shear occurs perpendicular to the smaller horizontal building dimension. Comparison of the wind tunnel results with current torsion provisions in the American wind standard, the Canadian and European wind codes demonstrate significant discrepancies. Suggested load combination factors were introduced aiming at an adequate evaluation of wind load effects on rectangular medium-rise buildings.

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.