• 제목/요약/키워드: Force Sensitive Resistor (FSR)

검색결과 9건 처리시간 0.021초

압력 센서를 이용한 보행 패턴 모니터링 시스템 구현 (Implementation of Gait Pattern Monitoring System Using FSR(Force Sensitive Resistor) Sensor)

  • 김기완
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.56-60
    • /
    • 2021
  • Recently, technologies for internet of things have been rapidly advanced with development of network. Also interest in smart healthcare that informs about motion information of users has been growing. In this paper, a system that is monitoring the weight on both feet by using aduino and FSR(Force Sensitive Resistor) Sensor is implemented. A 4-channel sensor driver module was implemented to measure a more accurate weight value. It is monitoring the weight on both feet by the using an application for either your PC or mobile device. Mobile applications can contribute to reducing human damage by sending messages along with location in emergency situations, such as injuries caused by falls during outdoor activities.

저가형 3D프린팅 2축 압력 센서 개발 (Development of Low-cost 3D Printing Bi-axial Pressure Sensor)

  • 최헌수;여준성;성지훈;최현진
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.152-158
    • /
    • 2022
  • As various mobile robots and manipulator robots have been commercialized, robots that can be used by individuals in their daily life have begun to appear. With the development of robots that support daily life, the interaction between robots and humans is becoming more important. Manipulator robots that support daily life must perform tasks such as pressing buttons or picking up objects safely. In many cases, this requires expensive multi-axis force/torque sensors to measure the interaction. In this study, we introduce a low-cost two-axis pressure sensor that can be applied to manipulators for education or research. The proposed system used three force sensitive resistor (FSR) sensors and the structure was fabricated by 3D printing. An experimental device using a load cell was constructed to measure the biaxial pressure. The manufactured prototype was able to distinguish the +-x-axis and the +-y-axis pressures.

An instrumented Glove for Grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung-Hwan;Cannon, David;Freivalds, Andris
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.141-146
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotics manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct(VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.ck telemanipulation.

  • PDF

An instrumented glove for grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung Hwan;Cannon, David;Freivalds, Andris
    • 대한인간공학회지
    • /
    • 제15권2호
    • /
    • pp.165-176
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufactruing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple- degree-of-freedom force feedback telemanipulation.

  • PDF

호흡 측정 수면베개 시스템 (Respiration Measurement Sleeping Pillow System)

  • 안도현;쩐밍;이종민;박재희
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.280-285
    • /
    • 2017
  • This paper presents a respiration measurement sleeping pillow based on pressure sensors. The respiration measurement sleeping pillow system consists of a sleeping pillow, an interface circuit, a respiration measurement system, and four force-sensitive resistor(FSR) sensors attached at the bottom of the sleeping pillow. The FSR sensors are used to detect the respiration signals induced by the body movement while breathing. The respiration signals of a twenty health man were measured and analyzed by utilizing the respiration measurement sleeping pillow system. The pillow system could detect the respiration signals and had similar characteristics to the chest type BIOPAC respiration sensor used by medical doctors. The respiration rates of ten subjects were also measured. The average measurement accuracy was about 98.8%. The research results showed that this pillow system can be used to detect and analyze the respiration signal when sleeping for the better sleep management.

원통형 물체 쥐기 시 건강한 성인과 척수마비 환자의 최대 손가락 끝 힘 분포 비교 (Comparison of Maximum Fingertip Force Distribution in Cylindrical Grasping Between Healthy Adults and Patients With Spinal Cord Injury)

  • 황지선;이재선;황선홍
    • 한국전문물리치료학회지
    • /
    • 제29권1호
    • /
    • pp.28-36
    • /
    • 2022
  • Background: It is known that hand strength and fingertip force are used as an indicator of muscle strength and are also highly related to the various chronic symptoms and even lifespan. To use the individual fingertip force (IFF) as a quantitative index for clinical evaluation, the IFF should be measured and analyzed with various variables from various subjects, such as the normal range of fingertip force and the difference in its distribution by disease. Objects: We tried to measure and analyze the mean maximum IFF distribution during grasping a cylindrical object in healthy adults and patients with spinal cord injury (SCI). Methods: Five Force-sensitive resistor (FSR) sensors were attached to the fingertips of 24 healthy people and 13 patients with SCI. They were asked to grip the object three times for five seconds with their maximum effort. Results: The mean maximum IFF of the healthy adult group's thumb, index, and middle finger was similar statistically and showed relatively larger than IFF of the ring and small finger. It is a 3-point pinch grip pattern. All fingertip forces of patients with SCI decreased by more than 50% to the healthy group, and their IFF of the middle finger was relatively the largest among the five fingertip forces. The cervical level injured SCI patients showed significantly decreased IFFs compared to thoracic level injured SCI patients. Conclusion: We expect that this study results would be helpful for rehabilitation diagnosis and therapy goal decision with robust further study.

A Study on the Cost-Effective Personalized Plantar Pressure Measurement System

  • Kang, Ji-Woo;Kwon, Young-Man;Lim, Meoung-Jae;Chung, Dong-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권4호
    • /
    • pp.11-17
    • /
    • 2019
  • Plantar pressure data can be used not only for walking patterns in daily life, but also for eating, health care, and disease prevention. For this reason, the importance of plantar pressure measurement has recently increased. However, most systems that can measure both static and dynamic plantar pressure at the same time are expensive, not portable, and not universal. In this study, we propose a system that effectively reduces the number of sensors in plantar pressure system. Through this, we want to increase the economics and practicality by reducing the size and weight of the system, as well as the power consumption. First, for static plantar pressure and dynamic plantar pressure, the values measured by existing precision instruments are analyzed to determine how many measurement parts the insole is divided into. Next, for the divided measuring parts, the position of the sensor is determined by calculating the Center of Pressure (COP) for each part with the values of all dynamic and static plantar pressure sensors. Finally, in order to construct a personalized plantar pressure measurement system, we propose a weighting method for the static plantar pressure COP and the dynamic plantar pressure COP for each part.

실시간 손 제스처 인식을 위하여 손목 피부 표면의 높낮이 변화를 고려한 스마트 손목 밴드 (Smart Wrist Band Considering Wrist Skin Curvature Variation for Real-Time Hand Gesture Recognition)

  • 강윤;정주노
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.18-28
    • /
    • 2023
  • This study introduces a smart wrist band system with pressure measurements using wrist skin curvature variation due to finger motion. It is easy to wear and take off without pre-adaptation or surgery to use. By analyzing the depth variation of wrist skin curvature during each finger motion, we elaborated the most suitable location of each Force Sensitive Resistor (FSR) to be attached in the wristband with anatomical consideration. A 3D depth camera was used to investigate distinctive wrist locations, responsible for the anatomically de-coupled thumb, index, and middle finger, where the variations of wrist skin curvature appear independently. Then sensors within the wristband were attached correspondingly to measure the pressure change of those points and eventually the finger motion. The smart wrist band was validated for its practicality through two demonstrative applications, i.e., one for a real-time control of prosthetic robot hands and the other for natural human-computer interfacing. And hopefully other futuristic human-related applications would be benefited from the proposed smart wrist band system.