• Title/Summary/Keyword: Force Reflection

Search Result 183, Processing Time 0.065 seconds

Tele-operated Control of an Autonomous Mobile Robot Using a Virtual Force-reflection

  • Tack, Han-Ho;Kim, Chang-Geun;Kang, Shin-Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.244-250
    • /
    • 2003
  • In this paper, the relationship between a slave robot and the uncertain remote environment is modeled as the impedance to generate the virtual force to feed back to the operator. For the control of a tele-operated mobile robot equipped with camera, the tele-operated mobile robot take pictures of remote environment and sends the visual information back to the operator over the Internet. Because of the limitation of communication bandwidth and narrow view-angles of camera, it is not possible to watch the environment clearly, especially shadow and curved areas. To overcome this problem, the virtual force is generated according to both the distance between the obstacle and robot and the approaching velocity of the obstacle. This virtual force is transferred back to the master over the Internet and the master(two degrees of freedom joystick), which can generate force, enables a human operator to estimate the position of obstacle in the remote environment. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. This force reflection improves the performance of a tele-operated mobile robot significantly.

Development of Force Reflecting Joystick for Field Robot

  • Song, In-Sung;Ahn, Kyung-Kwan;Yang, Soon-Yong;Lee, Byung-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132.5-132
    • /
    • 2001
  • In teleoperation field robotic system such as hydraulically actuated robotic excavator, the maneuverability and convenience is the most important part in the operation of robotic excavator. Particularly the force information is important in dealing with digging and leveling operation in the teleoperated excavator. Excavators are also subject to a wide variation of soil-tool interaction forces. This paper presents a new force reflecting joystick in a velocity-force type bilateral teleoperation system. The master system is electrical joystick and the slave system is hydraulically actuated cylinder with linear position sensor. Particularly Pneumatic motor is used newly in the master joystick for force reflection and the information of the pressure of salve cylinder is measured and utilized as the force feedback signal. Also force-reflection gain greatly affects the ...

  • PDF

Wireless LAN based Teleoperation of a Mobile Robot with Force-reflection (무선 LAN기반에서 힘 반영을 이용한 이동로봇의 원격제어)

  • Hong, Hyun-Ju;Park, Chang-Jun;Ro, Young-Shick
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.261-265
    • /
    • 2005
  • In this paper, we constructed the infrastructure with wireless LAN and Access Point in the indoor environment and implemented the teleoperation. Wireless LAN based teleoperation system is irregular communication delay according to environment condition and occurrence possibility of blackout is very high. In this paper, In case these problem happened, we measured communication delay time by real time, and did mobile robot to control harmoniously through vision and force reflection information. Also, we present obstacle-avoidance mode that mobile robot can travel without collision using direction information in case communication delay time is large. We proved usefulness of presented algorithm through teleoperation experiment to apply presented algorithm.

  • PDF

Remote Control of a Mobile Robot Using Human Adaptive Interface (사용자 적응 인터페이스를 사용한 이동로봇의 원격제어)

  • Hwang, Chang-Soon;Lee, Sang-Ryong;Park, Keun-Young;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.777-782
    • /
    • 2007
  • Human Robot Interaction(HRI) through a haptic interface plays an important role in controlling robot systems remotely. The augmented usage of bio-signals in the haptic interface is an emerging research area. To consider operator's state in HRI, we used bio-signals such as ECG and blood pressure in our proposed force reflection interface. The variation of operator's state is checked from the information processing of bio-signals. The statistical standard variation in the R-R intervals and blood pressure were used to adaptively adjust force reflection which is generated from environmental condition. To change the pattern of force reflection according to the state of the human operator is our main idea. A set of experiments show the promising results on our concepts of human adaptive interface.

A Study on the Force Reflection Joystick Method or controlling Rehabilitation Assisting System (재활 보조 시스템 제어를 위한 힘 반향 조이스틱 기법에 관한 연구)

  • Hong, J.P.;Lee, E.H.;Kim, B.S.;Kim, S.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.507-510
    • /
    • 1997
  • In this paper, we proposed force reflection method using joystick or controlling rehabilitation assisting mobile robot. We defined reflected orce equation as two terms. One is distance between mobile robot and obstacle, the other is speed of rehabilitation assisting robot. And we found the each gain value which guarantees stable navigation of robot. And we experimented simulation with simulation program supporting virtual 2-D map. Through the experiments, we confirmed force reflection algorithm is efficient when controlling rehabilitation assisting robot.

  • PDF

A Study on the Improvement of Joystick Control Method for the Disabled (장애자를 위한 조이스틱 제어기법 향상에 관한 연구)

  • Hong, J.P.;Lee, E.H.;Kim, B.S.;Chang, W.S.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.103-106
    • /
    • 1996
  • In this paper, we proposed the design and algorithm of force reflection joystick which control mobile robot as a rehabilitation assistance system. The disabled persons are poor at joystick control because of hand vibration and clumsiness in operating it. These problems bring tasks which concerned with operator's safety So there is required technique which prevent collision with wall or obstacles. One of these solution is force reflection joystick which disturb that robot is closed to the wall. To confirm this way, we experimented and simulated with force reflection joystick which attached torque controller.

  • PDF

Internet-based Teleoperation of a Mobile Robot with Force-reflection (인터넷 환경에서 힘반영을 이용한 이동로봇의 원격제어)

  • 진태석;임재남;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.585-591
    • /
    • 2003
  • A virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

Force-Reflected Teleoperation of Grasper for Minimum Invasive Surgery (최소침습수술용 Grasper의 힘반영 원격제어)

  • Yoon, Byoung-Soung;Jang, Dae-Jin;Park, Tae-Wook;Yang, Hyun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1470-1475
    • /
    • 2003
  • The senses that a doctor can feel is limited in MIS(Minimal Invasive Surgery) which guarantees the fast recovery of the patient and minimal incision for going in and out of instruments through the tissue of the patient. In particular, the surgical robotic teleoperation system developed recently serves with only the information of eyesight and auditory sense. Therefore force-reflection is the most demanded element of the senses in manipulating surgical instruments. In this paper, we designed the Master system and the 2 D.O.F grasper for the robotic teleoperation system(Slave) that has two force sensors on the grasper. Particularly, we focused on serve to master's handle with the contact force between tissue and the grasper of Slave.

  • PDF

Three OOP Haptic Simulator for a Needle Biopsy (3자유도 힘반향 장치를 이용한 침생검 햅틱 시뮬레이터)

  • 권동수;경기욱;감홍식;박현욱;나종범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.539-539
    • /
    • 2000
  • This paper shows how to implement force reflection for a needle insertion problem. The target is a needle spine biopsy simulator for tumor inspection by needle insertion. Simulated force is calculated from the relationship of volume graphic data and the orientation and Position of the needle, and it is generated using PHANTOM$^{TM}$. To generate realistic force reflection, the directional force of the needle has been generated by tissue model. The other rotational force is generated using a pivot to keep the needle in the initial inserted direction after puncturing the skin. Since the used haptic device has limitation for generating high stiffness and large damping, scale downed model and digital filter are used to stabilize the system.m.

  • PDF