• Title/Summary/Keyword: Force Prediction

Search Result 906, Processing Time 0.028 seconds

Development of Cutting Simulation System for Prediction and Regulation of Cutting Force in CNC Machining (CNC 가공에서 절삭력 예측과 조절을 위한 절삭 시뮬레이션 시스템 개발)

  • 고정훈;이한울;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.3-6
    • /
    • 2002
  • This paper presents the cutting simulation system for prediction and regulation of cutting force in CNC machining. The cutting simulation system includes geometric model, cutting force model, and off-line fred rate scheduling model. ME Z-map(Moving Edge node Z-map) is constructed for cutting configuration calculation. The cutting force models using cutting-condition-independent coefficients are developed for flat-end milling and ball-end milling. The off-line feed rate scheduling model is derived from the developed cutting force model. The scheduled feed rates are automatically added to a given set of NC code, which regulates the maximum resultant cutting force to the reference force preset by an operator. The cutting simulation system can be used as an effective tool for improvement of productivity in CNC machining.

  • PDF

Mathematical expression for the Prediction of Strip Profile in hot rolling mill (열연 판형상 예측 수식모델 개발)

  • Cho Y.S.;Hwang S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.70-73
    • /
    • 2004
  • The approach in this thesis is for prediction of deformed strip profile in hot rolling mill. This approach shows how to make an expression as a mathematical form in predicting strip profile. This approach is based on the velocity field, shear stress and material flow on the strip edge along width direction and lateral displacement and stress along width are analytically calculated. Roll force is calculated in each section and then combined together to show roll force distribution along width. All the assumptions to make equation form for this approach are supported by FEM simulation result and the result of model is verified by FEM result. So, this model will supply very useful tool to the researcher and engineers which takes less time and has similar accuracy in predicting roll force profile comparing to FEM simulation. This model has to be combined with deformed roll profile model, which include thermal crown prediction and wear prediction model to predict deformed strip profile.

  • PDF

Prediction of Roll Force in Hot Grooveless Rolling of Billet (열간 빌렛의 평롤 압연시 압연하중 예측)

  • Byon, S.M.;Park, H.S.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1379-1382
    • /
    • 2007
  • In this paper, we present a simplified analytic approach for the prediction of roll force to be applicable to the grooveless rolling. The approach is based on the deformation shape deduced from physical considerations and employs the assumption that the deformation homogeneously occurs in three directions. Strain and strain rate are calculated by the geometric relationships between those components and the prescribed deformation functions. Then, stress components are obtained from the Levy-Mises' flow rule. By integrating the stress components along the rolling direction, roll force are finally obtained. The prediction accuracy of the proposed model is examined through comparison with results obtained from the finite element analysis.

  • PDF

A Study on the Precision Machining during End Milling Poeration by Prediction of Generated Surface Topography (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.788-793
    • /
    • 1997
  • The surface,generated by end milling operation, is deteriorated by tool runout,vibration,friction,tool deflection, etc. In many source,deflection of tool affects to surfave accuracy. To develop a surface accracy model,method for the prediction of the topography of machined surfaces has been developed based on models of machine tool kinematics and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool resulted in cutting force. For the more accurate prediction of cutting force,flexible end mill model is used to simulate cutting process. Compute simu;ation have shown the feasibility of the surface generation system.

  • PDF

Rolling Force Prediction in Cold rolling Mill using Neural Networks (신경망을 이용한 냉연 압하력 예측)

  • Cho, Yong-Jung;Cho, Sung-Zoon
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.298-305
    • /
    • 1996
  • Cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. Most of rolling processes use mathematical models to predict rolling force which is very important to decide the resultant thickness of a coil. In general, these mathematical models are not flexible for variant coil types and cannot handle various elements which is practically important to decide accurate rolling force. A corrective neural network is proposed to improve the accuracy of rolling force prediction. Additional variables-composition of the coil, coiling temperature and working roll parameters-are fed to the network. The model uses an MLP with BP to predict a corrective coefficient. The test results using 1,586 process data collected at POSCO in early 1995 show that the proposed model reduced the prediction error by 30% on average.

  • PDF

Prediction of Roll Force Profile in Cold Rolling - Part II : Application and Validation (냉간 압연에서 압하력 분포 예측 - Part II : 적용 및 검증)

  • Nam, S.Y.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.197-202
    • /
    • 2019
  • This paper proposes a precise mathematical model for the prediction of the variation of the roll force across a strip in cold rolling. It further describes the deformation characteristics of the strip using a 3-D finite element method. The different features of hot rolling and cold rolling through a 3-D finite element method are shown. The predicted roll force profile and tension profile are verified through comparison with the prediction from a 3-D finite element method.

Mean Cutting Force Prediction in Ball-End Milling of Slanted Surface Using Force Map (볼엔드밀 경사면 가공에서 절삭력 맵을 이용한 평균절삭력 예측)

  • 김규만;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.212-219
    • /
    • 1998
  • During machining of dies and molds with sculptured surfaces. the cutter contact area changes continuously and results in cutting force variation. In order to implement cutting force prediction model into a CAM system, an effective and fast method is necessary. In this paper. a new method is proposed to predict mean cutting force. The cutter contact area in the spherical part of the cutter is obtained using Z-map, and expressed by the grids on the cutter plane orthogonal to the cutter axis. New empirical cutting parameters were defined to describe the cutting force in the spherical part of cutter. Before the mean cutting force calculation, the cutting force density in each grid is calculated and saved to force map on the cutter plane. The mean cutting force in an arbitrary cutter contact area can be easily calculated by summing up the cutting force density of the engaged grid of the force map. The proposed method was verifed through the slotting and slanted surface machining with various inclination angles. It was shown that the mean force can be calculated fast and effectively through the proposed method for any geometry including sculptured surfaces with cusp marks and holes.

  • PDF