• 제목/요약/키워드: Force Prediction

검색결과 906건 처리시간 0.026초

얼간 사상 압연중 압하력 예측 모델 개발 및 적용 (The development and application of on-line model for the prediction of roll force in hot strip rolling)

  • 이중형;;곽우진;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

유한요소법을 이용한 드로우비드 저항력 예측모델 개발 및 성형공정에의 적용 (Simulation-based Prediction Model of Draw-bead Restraining Force and Its Application to Sheet Metal Forming Process)

  • 배기현;송정한;허훈;김세호;박성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.55-60
    • /
    • 2006
  • Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development.

  • PDF

서포트 벡터 머신을 이용한 차량도어의 개폐 보조력 예측 (Prediction of Assistance Force for Opening/Closing of Automobile Door Using Support Vector Machine)

  • 양학진;신현찬;김성근
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.364-371
    • /
    • 2016
  • 본 논문에서는 차량이 주차된 지형의 조건에 따라 적용되는 도어 개폐 보조력 예측 모델을 제시하였다. 경사도, 사용자의 힘 등의 조건에 따른 개폐력 설정을 위하여 작동 보조력에 대한 학습 모델을 구현하여 비교하였고, 예측 모델의 학습을 위하여 축소모형을 제작하여 실험을 통해 학습데이터를 얻을 수 있는 실험 모델을 구성하였다. 실제 보상력 데이터를 학습, 반영하여 적정 값을 도출할 수 있는 학습 알고리즘을 개발하고, 이를 적용할 수 있는 시스템을 개발하였다. 학습 방법 중에서 인공신경망(Artificial Neural Network, ANN)과 서포트 벡터 머신(Support Vector Machine, SVM) 알고리즘을 적용하여 비교 검증하였다. 실제 측정값과 비교 검증한 결과, 차량의 도어 개폐 보조력 예측을 위해서 서포트 벡터 머신의 상대적으로 높은 적용성을 확인할 수 있었으며, 이 예측 모델을 활용하여 경사, 사용자의 힘에 따라 도어 개폐 구동 모터가 보상해야 할 적정한 힘을 예측하여 시간에 따라 구동함으로써 사용자가 평지와 같은 힘으로 문을 제어할 수 있는 시스템 구성을 제시하였다.

A study on the improvement of thickness accuracy in a plate mill

  • Lee, Duk-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.723-727
    • /
    • 2003
  • In this paper, two methods are discussed for good rolling force prediction in a plate mill. One is about the development of a long and a short learning scheme using a Neural Network for normal rolling and the other is about a mathematical model improvement by considering microstructural changes for controlled rolling. The research results are implemented in a on-line system of Pohang Works in POSCO and the field tests have showed that the prediction accuracies of rolling force are highly improved.

  • PDF

WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증 (WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer)

  • 변의용;홍성유;신혜윰;이지우;송재익;함숙정;김좌겸;김형우;김종석
    • 대기
    • /
    • 제21권2호
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

공군 현업 수치예보를 위한 삼차원 변분 자료동화 체계 개발 연구 (Development of the Three-Dimensional Variational Data Assimilation System for the Republic of Korea Air Force Operational Numerical Weather Prediction System)

  • 노경조;김현미;김대휘
    • 한국군사과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.403-412
    • /
    • 2018
  • In this study, a three-dimensional variational(3DVAR) data assimilation system was developed for the operational numerical weather prediction(NWP) system at the Republic of Korea Air Force Weather Group. The Air Force NWP system utilizes the Weather Research and Forecasting(WRF) meso-scale regional model to provide weather information for the military service. Thus, the data assimilation system was developed based on the WRF model. Experiments were conducted to identify the nested model domain to assimilate observations and the period appropriate in estimating the background error covariance(BEC) in 3DVAR. The assimilation of observations in domain 2 is beneficial to improve 24-h forecasts in domain 3. The 24-h forecast performance does not change much depending on the estimation period of the BEC in 3DVAR. The results of this study provide a basis to establish the operational data assimilation system for the Republic of Korea Air Force Weather Group.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

스러스트 래버린스 실을 배면에 갖는 원심형 임펠러의 축력 해석 (Analysis of the Axial Thrust Force of a Centrifugal Impeller with a Thrust Labyrinth Seal at its Backside)

  • 박준혁;김태호
    • Tribology and Lubricants
    • /
    • 제37권1호
    • /
    • pp.31-40
    • /
    • 2021
  • This study describes the effects of a thrust labyrinth seal applied to the backside of a centrifugal impeller on the axial thrust force for high speed turbomachinery. The bulk flow model using Neumann's equation calculates the seal cavity pressures and leakage flow rate of the thrust labyrinth seal based on three configurations: teeth-on-rotor (TOR), teeth-on-stator (TOS), and interlocking labyrinth seal (ILS). Prediction results show that the ILS is superior to the TOR and TOS in terms of leakage flow rate. A mathematical model of a centrifugal impeller with a thrust labyrinth seal on its backside calculates the force components corresponding to the impeller inlet, shroud, impeller backside outer, backside seal, and backside inner pressures. A summation of the force components renders the total axial thrust force acting on the centrifugal impeller. The Newton-Raphson numerical scheme iteratively calculates the pressures and leakage flow rate through the impeller wall gap. The prediction results reveal that the leakage flow rate and total axial thrust force increase with rotor speed, and the ILS significantly decreases the leakage flow rate, whereas it slightly increases the axial thrust force when compared to TOR and TOS. Increasing the seal clearance causes an increase in the leakage flow rate and a slight decrease in the axial thrust force with the ILS.

판 압연에서 압하력 및 장력 분포 예측 모델 개발 (Development of Mathematical Model for the Prediction of Roll Force and Tension Profiles in Flat Rolling)

  • 김용기;황상무
    • 소성∙가공
    • /
    • 제19권6호
    • /
    • pp.344-351
    • /
    • 2010
  • This paper presents a precision on-line model for the prediction of the roll force and tension distributions across the strip in hot strip rolling. The approach is based on an approximate 3-D theory of rolling, and in particular, considers the effect of pre-deformation of the strip, which occurs near the roll entrance before the strip enters the bite zone. The prediction accuracy of the proposed model is examined through comparison with the predictions from the 3-D finite element models.

Z-map을 이용한 임의의 절삭영역에서의 볼 엔드밀의 절삭력 예측에 관한 연구 (The Study on the Cutting Force Prediction in the Ball-End Milling Process at the Random Cutting Area using Z-map)

  • 김규만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.125-129
    • /
    • 1996
  • In this study, a method is proposed for the cutting force prediction of Ball-end milling process using Z-map is proposed. Any types of cutting area generated from previous cutting process can be expressed in z-map data. Cutting edge of a ball-end mill is divided into a set of finite cutting edges and the position of this edge is projected to the cross-section plane normal to the Z-axis. Comparing this projected position with Z-map data of cutting area and determining whether it is in the cutting region, total cutting force can be calculated by means of numerical integration. A series of experiments such as side cutting and upward/downard cutting was performet to verify the simulated cutting force.

  • PDF