• Title/Summary/Keyword: Force Prediction

Search Result 907, Processing Time 0.024 seconds

Cutting force prediction in the ball-end milling process of barious cutting area using Z-map (Z map을 이용한 임의의 절삭영역에서 볼엔드밀의 절삭력예측)

  • 김규만;조필주;김병희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.57-65
    • /
    • 1997
  • In this study, a cutting force in the Ball-end milling process is calculated using Z-map. Z-map can describe any type of cutting area resulting from the previous cutting geometry and cutting condition. Cutting edge of a ball-end mill is divided into infinitesimal cutting edge elements and the position of the ele- ment is projected to the cutter plane normal to the Z axis. Also the cutting area in the cutter plane is obtained by using the Z-map. Comparing this projected position with cutting area, it can be determined whether it engages in the cutting. The cutting force can be calculated by numerical integration of cutting force acting on the engaged cutting edge elements. A series of experiments such as contouring and upward/downward ramp cutting was performed to verify the calculated cutting force.

  • PDF

Model Identification of Hydraulic Pin-On-Disk type Tribotester with DDV

  • Kim, Seung-Hyun;Lee, Chang-Don;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.1-170
    • /
    • 2001
  • This paper developed the model for electro hydraulic force control system by identification method via ARMAX model. Implementation of Identification is performed on Pin-On-Disk type tribotester. The wear mechanism is an important mechanic property to select a material´s life and a optimum work condition. Pin-on-disk type tribotester is popular wear analysis experimental equipment and its mechanism is that adding a force on a rotating disk to simplify two surface contact´s wear experimental condition. Material´s rotating velocity and eccentricity rotation makes disturbance and it affects adding constant force. To get a high performance of force adding part, DDV(Direct Drive Valve) which has pressure control loop is used. To obtain a tribotester´ s ARMAX model, prediction error method(PEM) is used in case force adding part and rotating part is ...

  • PDF

Prediction of Cutting Force using Neural Network and Design of Experiments (신경망과 실험계획법을 이용한 절삭력 예측)

  • 이영문;최봉환;송태성;김선일;이동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1032-1035
    • /
    • 1997
  • The purpose of this paper is to reduce the number of cutting tests and to predict the main cutting force and the specific cutting energy. By using the SOFM neural network, the most suitable cutting test conditions has been found. As a result, the number of cutting tests has been reduced to one-third. And by using MLP neural network and regression analysis, the main cutting force and specific cutting energy has been predicted. Predicted values of main cutting force and specific cutting energy are well concide with the measured ones.

  • PDF

A Study on the Detection of Tool Wear by Use of Cutting Force Component in Orthogonal Cutting (선삭가공에서 절삭분력을 이용한 공구의 마멸검출에 관한 연구)

  • Kim, Ki-Choong;Hyun, Chung-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.4
    • /
    • pp.30-42
    • /
    • 1986
  • On the analysis of cutting mechanics in orthogonal cutting, each cutting force component can be predicted. By adding the flank face wear term to the prediction equation for cutting force components, complete equations are obtained. Using these equations, it is shown that cutting force components are increased linearly as flank face wear land is developed, in theory and experiment. By making non-dimensional term ie. Fv/Fc, the width of variation of output signal Fv/Fc is greately decreased compared with each cutting force component as cutting condition is varied. Among these conditions, the variation of chip width in the range of more than 1mm and that of cutting velocity have little effect on the output signal Fv/Fc, that of Flank face werr land can be detected without difficulty.

  • PDF

Development of Experimental Equation of Hood Frame for Vehicle Considering Operating Angle (작동각을 고려한 차량 후드 프레임의 실험식 개발)

  • Song, Yo-Sun;Hur, Kwan-Do;Son, In-Soo
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.57-63
    • /
    • 2016
  • This paper presents the experimental result and theoretical analysis result to investigate the correlation between the operating force, angle and locking torque for vehicle hood frame. Also, we derived the experimental equation that using the results for experiment and theory. The hood frame is switching-devices used for opening and closing the vehicle hood. It needs the correlation data between locking torques of each joint, operating force and angle of hood frame. The correlation data for torque and reaction force of hood frame obtained through experiment and theory analysis. Finally, the experimental equation of the locking torque prediction for the hood frame is derived.

Effect of prestressing force on natural frequency of a prestressed concrete beam (PSC보의 긴장력이 고유진동수에 미치는 영향)

  • Choi, Sanghyun
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.2
    • /
    • pp.124-137
    • /
    • 2009
  • The research on the effect of the prestressing force on the frequency of PSC(Prestressed Concrete beam) has been conducted theoretically and experimentally, and a few theory has been presented. However, the presented theories show no agreement in predicting the effect of the prestressing force. In this paper, the theories on the effect of the prestressing force on the frequency of PSC beam are presented and evaluated using the experimental result. To obtain the experimental result, two PSC beam specimens were manufactured, and the modal test and analysis were performed. The modal analysis results revealed that the prestressing force increased the natural frequency of the PSC beam. Comparing predicted results using existing theories show that Kim's model, which substitutes the prestressing tendon with the equivalent beam, gives the best prediction result.

  • PDF

Development of the Size Effect Model for More Accurate Cutting Force Prediction (향상된 절삭력 예측을 위한 Size Effect 모델의 개발)

  • 윤원수;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.995-1000
    • /
    • 2000
  • In this paper. a mechanistic model is first constructed to predict three-dimensional cutting forces, and the uncut chip th thickness is calculated by following the movements of the position of the center of a cutter, which varies with the nominal feed, cutter deflection and runout. For general implementation to a real machining, this paper presents the method that determines constant cutting force coefficients, irrespective of the cutting conditions or cutter rotation angles. In addition, this study presents the approach which estimates runout-related parameters. the runout offset and its location angle, using only one measurement of cutting forces. For more accurate cutting force predictions, the size effect has to be considered in the cutting force model. In this paper, two approximate methods are suggested since the strict approach is practically impossible due to a measurement problem. The size effect is individually considered for narrow and wide cuts.

  • PDF

Prediction of Cutting Force Using Independent Component Analysis (독립성분 해석을 이용한 절삭력 예측)

  • Lee, Young-Moon;Jang, Sung-Il;Lee, Dong-Sik;Jun, Jung-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.22-30
    • /
    • 2003
  • Cutting force signals are very useful to evaluate the cutting state, but many disturbing factors are occurring during cutting. For the reliability of the analysis, selecting pure cutting force signals from the original ones is needed. In the current study, using the ICA(Independent Component Analysis) effective cutting force components are seperated from the original signals. And using this, as input data of MLP(Multi-Layer Perception) cutting forces are predicted Experimental results are then compared with the predicted ones to verify the validation of the proposed model.

  • PDF

FEM Based Approach to Predict Rolling Force and Strip Thickness in 4-High Cold Rolling Mill Driven by Backup-Roll (유한요소법을 이용한 보강롤 구동 4단 냉간압연기에서의 압연하중 및 스트립 두께 예측)

  • Lee, Jae-Hyun;Byon, Sang-Min;Park, Heung-Slk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.129-135
    • /
    • 2009
  • In this paper, a finite element model is presented for the prediction of roll force and strip thickness in a backup-roll-drive mill. The proposed FE model is focused mainly on analyzing the elastic/plastic behavior between a work roll and a strip as well as the rigid/plastic behavior between a backup roll and a work roll. The capability of the proposed model is demonstrated through application to 4-high silicon steel rolling mill at POSCO. Results show that the predicted roll force and strip thickness rolled accurately agree with the measured them. It is also illustrated that the proper position of work roll displaced to one side from the vertical centerline of the backup-roll may be determined by minimizing the horizontal force of work roll.

  • PDF

The Prediction of Tool Wear by Cutting Force Model in the Machining of Die Material (금형강 가공에서 절삭력 모델에 의한 공구마멸의 예측)

  • 조재성;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.61-66
    • /
    • 1994
  • Tool condition monitoring is one of the most important aspects to improve productivity and quality and to achieve intelligent machining system. The tool state is classified into three groups as chipping, wear and fracture. In this study, wear of a ceramic cutting tool for hardened die material (SKD11) was investigated. Flank wear was occured more dominant than crarer wear. Therefore, to predict flank wear, the modeling of cutting force has been performed. The modeling of cutting force by an assumption that act the stress distribution on the tool face obtained through a numerical analysis. The relationships between the cutting force and the tool wear can be constructed by machining paraneters with cutting conditions. Experiments were performed under the various cutting conditions to ensure the validity of force models. The theoretical predictions of the flank wear is approximately in good agreement with experimental result.

  • PDF