• Title/Summary/Keyword: Force Measurement

Search Result 1,624, Processing Time 0.032 seconds

Mechanism Design of the Micro Weighing Device by Using Null Balance Method (영위법을 이용한 미소중량 측정 장치의 기구설계)

  • Choi, In-Mook;Woo, Sam-Yong;Kim, Boo-Shik;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.183-193
    • /
    • 2003
  • Micro-weighing device by using null balance method is being essential part in fields of high-technology industries such as precision semiconductor industry, precision chemistry, biotechnology and genetics etc. Also, requirements for high resolution and for large measurement range increase more and more. The performance of the micro-weighing device can be determined by the mechanism design and analysis. The analytical design method has been proposed for the performance improvement such as resolution, measurement range and fast response. The 2-stage displacement amplification is designed to overcome the limit of conventional force transmitting lever. The parallel spring is designed for the measurement result independent of the input force position variation. Also, the natural frequency of mechanism is analyzed for the fast response. After each analysis, optimal design has been carried out. To verify the analysis and design result, characteristics experiments had been carried out after construction. Finally, the system had been controlled.

The Measurement Errors of Elastic Modulus and Hardness due to the Different Indentation Speed (압입속도의 변화에 따른 탄성계수와 경도의 오차 연구)

  • Lee, Kyu-Young;Lee, Chan-Bin;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.360-364
    • /
    • 2010
  • Most research groups used two analysis methods (spectroscopy and nanotribology) to measure the mechanical properties of nano-materials: NMR (Nuclear Magnetic Resonance), IR (Infrared Spectroscopy), Raman Spectroscopy as the spectroscopy method and AFM (Atomic Force MicroScope), EFM (Electrostatic Force Microscope), KFM (Kelvin Force Microscope), Nanoindenter as the nanotribological one. Among these, the nano-indentation technique particularly has been recognized as a powerful method to measure the elastic modulus and the hardness. However, this technique are prone to considerable measurement errors with pressure conditions during measurement. In this paper, we measured the change of elastic modulus and hardness of an Al single crystal with the change of load, hold, and unload time, respectively. We found that elastic modulus and hardness significantly depend on load, hold, and unload time, etc. As the indent time was shortened, the elastic modulus value decreased while the hardness value increased. In addition, we found that elastic modulus value was more sensitive to indent load, hold, and unload time than the hardness value. We speculate that measurement errors of the elastic modulus and the hardness originate from the residual stress during indenting test. From our results, the elastic modulus was more susceptible to the residual stress than the hardness. Thus, we find that the residual stress should be controlled for the minimum measurement errors during the indenting test.

Measurement and analysis the peak recoil force of pistol (권총의 최대반동력 측정 및 해석)

  • Um, Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1033-1036
    • /
    • 1996
  • In Pistol, the peak recoil force affects the reliability of the frame and the accuracy of target shooting. To attenuate the peak recoil force of pistol, we develop measuring test bed, which consists of force sensors, linear sensor and a high speed video camera, execute tests with several Pistol models and compare the results measured.

  • PDF

Construction of Roof Structure for Jeju Worldcup Stadium (제주월드컵경기장 지붕구조물의 시공)

  • Lee Ju-Young;Kim Chan-Soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.174-179
    • /
    • 2002
  • The cable stayed roof structure of Jeju worldcup stadium is erected with correct prestressed force that is required by the structural engineer who designs this structure. This study evaluated and adapted the erection process of cable, the erection force and the measurement of cable force for Jeju worldcup stadium. The process of erection is required not only to calculate election force but also to check structural stability, post process, construction period and using cranes. Considering the site conditions and technical problems, this study can attain successfully the erection of cable stayed roof structure of Jeju worldcup stadium with allowable errors.

  • PDF

Precision measurement of a laser micro-processing surface using a hybrid type of AFM/SCM (하이브리드형 AFM/SCM을 이용한 레이저 미세 가공 표면 측정)

  • Kim, Jong-Bae;Kim, Kyeong-Ho;Bae, Han-Sung;Nam, Gi-Jung;Lee, Dae-Chul;Seo, Woon-Hak
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.123-127
    • /
    • 2006
  • Hybrid type microscope with a Scanning Confocal Microscope (SCM) and a shear-force Atomic Force Microscope (AFM) is suggested and preliminarily studied. A image of $120{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a X-axis and Y-axis are 1kHz and 1Hz, respectively. Shear-force AFM is able to correctly measure the hight and width of sample with a resolution 8nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. We have carried out the measurement of total image of a sample by SCM and an exact analysis of each image by shear-force AFM.

  • PDF

The Study of Characteristics Evaluation for Bimorph PZT Cantilever and its Application (바이몰프 PZT 캔틸레버 특성평가 및 응용연구)

  • 김석삼;채영훈;권현규
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.133-138
    • /
    • 2003
  • The characteristics for bimorph PZT cantilever of laboratory-fabricated have been evaluated experimentally. The deflections of cantilever with PZT are result from a capillary force between a water drop and a tip of cantilever. The output voltage due to deflect cantilever are depend on the tip shape and thickness of cantilever. We applied a bimorph PZT cantilever to oil thickness measurement. This reasonable concept is that the output voltage be caused by different defected characteristics between oil and surface. Experimental results demonstrated that the high measurement accuracy of the oil film thickness is obtained from the probe.