• Title/Summary/Keyword: Force Identification

Search Result 360, Processing Time 0.024 seconds

Control of a Two-Arm Robot System for Assembly in Highy Uncertain Environment (불확실한 환경에서 조립을 수행하는 두 대의 로봇 팔 제어)

  • Jeong, Seong-Yeop;Gang, Gyeong-Dae;Lee, Du-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3072-3079
    • /
    • 2000
  • Assembly tasks are often performed by one robot with fixtures. This type of assembly system has low flexibility in terms of the variety of parts and the part-presentation the system can handle. This paper addresses assembly without fixtures using two-manipulator robot. An active method using force feedback is proposed for the peg-in-hole assembly in highly uncertain environment. Assembly states are defined as status having unique motion constraints and events are modeled as variation of the environmental force. The states are recognized through identification of the events using two 6-d. o. f. force/moment sensors. The proposed method is verified and evaluated by experiments with round peg-in-hole assembly.

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.

Crack identification in post-buckled beam-type structures

  • Moradi, Shapour;Moghadam, Peyman Jamshidi
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1233-1252
    • /
    • 2015
  • This study investigates the problem of crack detection in post-buckled beam-type structures. The beam under the axial compressive force has a crack, assumed to be open and through the width. The crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack detection is considered as an optimization problem, and the weighted sum of the squared errors between the measured and computed natural frequencies is minimized by the bees algorithm. To find the natural frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The differential quadrature method along with an arc length strategy is used to solve the static part, while the same method is utilized for the solution of the linearized dynamic part and the extraction of the natural frequencies of the cracked beam. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results show that several parameters such as the amount of applied compressive force and boundary conditions influences the outcome of the crack detection scheme. The identification results also show that the crack position and depth can be predicted well by the presented method.

Comparison between Field Test and Numerical Analysis for a Jacket Platform in Bohai Bay, China

  • Yang He-Zhen;Park Han-Il;Choi Kyung-Sik;Li Hua-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.1-7
    • /
    • 2006
  • This paper, presents a comparison between numerical analysis and field test on a real offshore platform in Bohai Bay, China. This platform is a steel jacket offshore platform with vertical piles. The field testing under wave-induced force and wind force etc. was conducted, in order to obtain the dynamic parameters of the structure, including the frequencies of the jacket platform, as well as the corresponding damping ratios and mode shapes. The natural excitation technology (NexT) combined with eigensystem realization algorithm (ERA) and the peak picking (PP) method in frequency domain are carried out for modal parameter indentification under operational conditions. The three-dimeansional finite element model (FEM) is constructed by ANSYS and analytical modal analysis is performed to generate modal parameters. The analytical results were compared with experimental results. A good agreement was achieved between the finite element and analysis and field test results. It is further demonstrated that the numerical and experimental modal analysis provide a comprehensive study on the dynamic properties of the jacket platform. According to the analysis results, the modal parameters identification under ambient excitation can calibrate finite element model of the jacket platform structures, or can be used for the structural health monitoring system.

Seismic Design Force for Rectangular Water Tank with Flexible Walls (유연한 벽면을 가진 사각형 물탱크의 설계지진력 산정)

  • Kim, Min Woo;Yu, Eunjong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.303-310
    • /
    • 2023
  • The equivalent static load for non-structural elements has a limitation in that the sloshing effect and the interaction between the fluid and the water tank cannot be considered. In this study, the equations to evaluate the impulse and convective components in the design codes and previous research were compared with the shaking table test results of a rectangular water tank with flexible wall panels. The conclusions of this study can be summarized as follows: (1) It was observed that the natural periods of the impulsive component according to ACI 350.3 were longer than system identification results. Thus, ACI 350.3 may underestimate the earthquake load in the case of water tanks with flexible walls. (2) In the case of water tanks with flexible walls, the side walls deform due to bending of the front and back walls. When such three-dimensional fluid-structure interaction was included, the natural period of the impulsive component became similar to the experimental results. (3) When a detailed finite element (FE) model of the water tank was unavailable, the assumption Sai = SDS could be used, resulting in a reasonably conservative design earthquake load.

Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses

  • Liu, Lijun;Lei, Ying;He, Mingyu
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.409-424
    • /
    • 2015
  • Structural nonlinearity is a common phenomenon encountered in engineering structures under severe dynamic loading. It is necessary to localize and identify structural nonlinearities using structural dynamic measurements for damage detection and performance evaluation of structures. However, identification of nonlinear structural systems is a difficult task, especially when proper mathematical models for structural nonlinear behaviors are not available. In prior studies on nonparametric identification of nonlinear structures, the locations of structural nonlinearities are usually assumed known and all structural responses are measured. In this paper, an identification algorithm is proposed for locating and identifying model-free structural nonlinearities and systems using incomplete measurements of structural responses. First, equivalent linear structural systems are established and identified by the extended Kalman filter (EKF). The locations of structural nonlinearities are identified. Then, the model-free structural nonlinear restoring forces are approximated by power series polynomial models. The unscented Kalman filter (UKF) is utilized to identify structural nonlinear restoring forces and structural systems. Both numerical simulation examples and experimental test of a multi-story shear building with a MR damper are used to validate the proposed algorithm.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.

Dynamic characteristic identification of PWM solenoid valve for automatic transmission (자동변속기용 펄스폭변조 솔레노이드 밸브의 동특성 식별)

  • Jung, Gyu-Hong;Cho, Baek-Hyun;Lee, Kyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1636-1647
    • /
    • 1997
  • As most of today's automatic transmissions in passenger car adopt a electro-hydraulic control system, the role of electronically controlled solenoid valves occupies an important position and it is essential to predict solenoid transient characteristics in order to design and evaluate the performance of the hydraulic control system. However, in general, both the magnetic and electrical parameters f the solenoid system are hardly known and it is not easy to model this section with moderate complexity although mechanical system could be developed using the classical second order system. This paper presents a dynamic modelling technique of a solenoid valve, that is controlled by pulse width modulation for an automatic transmission, in terms of system identification theory. In nonlinear computer simulation, it is shown that the identified systems which produce magnetic force to input duty cycle for various excitation signals predict the static and dynamic performance very well near the operating point and in experiment conducted to confirm the validity of identification theory for PWM solenoid valve, we find that there is a good agreement between the experimental data and simulation result. Hence, this model can be utilized in the development of pressure control system with PWM solenoid valve.

Observer Kalman Filter Identification of a Three-story Structure installed with Active Mass Driver (OKID를 이용한 실험 건물모델의 시스템 식별 실험)

  • 주석준;이상현;민경원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.161-169
    • /
    • 2004
  • This paper deals with system identification of a three-story building model with active mass damper (MID) for the controller design. Observer Kalman filter identification (OKID) technique is applied to find the relationship between the experimental results of the input and output. The inputs to the building model with MID are ground accelerations and motor command signal, which are, respectively, simulated earthquake and equivalent control force. The outputs are each floor acceleration and MID acceleration. The MID controller is designed based on the experimentally identified building system. Finally it is shown that experimental results agree accurately with simulated results.