• 제목/요약/키워드: Force Behind

검색결과 184건 처리시간 0.028초

Study on Wake Roll-Up Behavior Behind Wings In Close Proximity to the Ground

  • Han, Cheol-Heui;Cho, Jin-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.76-81
    • /
    • 2002
  • A numerical simulation of wake behavior behind three-dimensional wings in ground effect is done using an indirect boundary element method (Panel Method). An integral equation is obtained by applying Green's 2nd Identity on all surfaces of the flow domain. The AIC is constructed by imposing the no penetration condition on solid surfaces, and the Kutta at the wing's trailing edge. The ground effect is included using an image method. At each time step, a row of wake panels from wings' trailing edge are convected downstream following the force-free condition. The roll-up of wake vortices behind wings in close proximity is simulated.

이온풍을 이용한 실린더 뒤의 후류 제어 (The wake flow control behind a circular cylinder using ion wind)

  • 현기탁;전중환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.459-462
    • /
    • 2002
  • Many active and passive flow control methods have been studied since decades, but there are only few works about flow control methods using ion wind. This paper presents an experimental study on the wake control behind a circular cylinder using ion wind, a bulk motion of neutral molecules driven by locally ionized air of corona discharge. Experiments are done f3r different electrohydrodynamic numbers - the ratio of an electrical body farce to a fluid Inertial force - from 0 to 2 and for the Reynolds number ranging from $4{\times}10^3\;to\;8{\times}10^3$. Pressure distributions over a cylinder surface are measured and flow visualizations are carried out by smoke wire method. Flow visualizations confirm that ion wind affects significantly the wake structure behind a circular cylinder and pressure drag could be dramatically reduced by the superimposing ion wind.

  • PDF

피칭 운동익에 작용하는 비정상 유체력 (Unsteady Fluid Forces Acting on a Pitching Foil)

  • 양창조
    • 한국유체기계학회 논문집
    • /
    • 제8권6호
    • /
    • pp.47-54
    • /
    • 2005
  • An oscillating foil can produce a driving force through the generation of a reversed $K\'{a}rm\'{a}n$ vortex street, and it can be expected to be a new highly effective propulsion system. A simple pitching foil model was made and it was operated within a water channel. The wake formation behind a pitching foil was visualized and unsteady fluid forces were measured using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as reduced frequency, amplitude and pivot point in NACA 0010. The results showed that thrust coefficients increased with a reduced frequency. We also presented the experimental results on the characteristics of a pitching foil at various parameters.

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • 제9권4호
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

O-ring 을 이용한 원주의 저항감소에 관한 실험적 연구 (Drag Reduction of a Circular Cylinder With O-rings)

  • 임희창;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2089-2094
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167D, 0.05D and 0.067D with pitches of PPD=1D, 0.5D and 0.25D. The drag force, mean velocity and turbulent intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of $Re_D=7.8{\times}10^3{\sim}1.2{\times}10^5$. At $Re_D=1.2{\times}10^5$, the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.

  • PDF

혼 타 주위의 캐비테이팅 유동 특성에 대한 연구 (Cavitating-Flow Characteristics around a Horn-Type Rudder)

  • 최정은;정석호;김정훈
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.228-237
    • /
    • 2007
  • The flow characteristics around a horn-type rudder behind an operating propeller of a high-speed large container carrier are studied through a numerical method in fully wetted and cavitating flow conditions. The computations are carried out in a small scale ratio of 10.00(gap space=5mm) to consider the gap effects. The Reynolds averaged Navier-Stokes equation for a mixed fluid and vapor transport equation applying cavitation model are solved. The axisymmetry body-force distribution technique is utilized to simulate the flow behind an operating propeller. The gap flow, the three-dimensional flow separation, and the cavitation are the flow characteristics of a horn-type rudder. The pattern of three-dimensional flow separation is analyzed utilizing a topological rule. The various cavity positions predicted by CFD were shown to be very similar to rudder erosion positions in real ship rudder. The effect of a preventing cavitation device, a horizontal guide plate, is also investigated.

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제28권3호
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.

자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정 (Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements)

  • 김진석;성재용;김정수;최종욱;김성초
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

축류회전차 익말단 틈새유동에 대한 수치해석

  • 노수혁;조강래
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.336-345
    • /
    • 1998
  • The substantial loss behind axial flow rotor was generated by wake, various vortices in the hub region and the leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip was one of the main causes of the reduction of performance, the generation of noise and the aerodynamic vibration in rotor downstream. In this study, the three-dimensional flowfields in an axial flow rotor for various tip clearances were calculated, and the numerical results were compared with the experimental ones. The numerical technique was based on SIMPLE algorithm using standard k-.epsilon. model (WFM). Through calculations, the effects of the tip clearance on the overall performance of rotor and the loss distributions, and the increase in the displacement, momentum, and blade-force-deficit thickness of the casing wall boundary layer were investigated. The mass-averaged flow variables behind rotor agreed well with the experimental results. The presence of the tip leakage vortex behind rotor was described well. Although the loci of leakage vortex by calculation showed some differences compared with the experimental results, its behavior for various tip clearances was clarified by examining the loci of vortex center.

연강 판재의 맞대기 용접에서 아크에 작용하는 자기력의 해석 (Analysis of Electro-Magnetic Force Acting on Arc Column in Butt-Joint Welding of Mild Steel Plate)

  • 배강열
    • Journal of Welding and Joining
    • /
    • 제23권4호
    • /
    • pp.73-80
    • /
    • 2005
  • Arc blow being occurred by Electro-Magnetic force(EMF) during the electric arc welding prevents the formation of a sound weldment. In this study, the effects of arc position, groove size, tack weld and base plate on the EMF in a butt-joint welding of mild steel plate are analyzed by a computer simulation based on the finite element method. The EMF can be numerically identified to be caused by a difference of the magnetic flux-density between ahead of and behind the arc in case that the workpiece locates asymmetrically around the uc. When there exists an air gap of groove ahead of the arc in the welding direction, the similar magnetic force has been producted regardless of the arc position and the gap size. The tack weld alleviates the magnetic force to about one fourth at the finish end of the workpiece. The magnetic force can be also significantly reduced with the base plate to about one fifth at the start end of the workpiece containing a tack weld.