• 제목/요약/키워드: Force Balance

검색결과 600건 처리시간 0.027초

MSBS-SPR Integrated System Allowing Wider Controllable Range for Effective Wind Tunnel Test

  • Sung, Yeol-Hun;Lee, Dong-Kyu;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.414-424
    • /
    • 2017
  • This paper introduces an experimental device which can measure accurate aerodynamic forces without support interference in wide experimental region for wind tunnel test of micro aerial vehicles (MAVs). A stereo pattern recognition (SPR) method was introduced to a magnetic suspension and balance system (MSBS), which can eliminate support interference by levitating the experimental model, to establish wider experimental region; thereby MSBS-SPR integrated system was developed. The SPR method is non-contact, highly accurate three-dimensional position measurement method providing wide measurement range. To evaluate the system performance, a series of performance evaluations including SPR system measurement accuracy and 6 degrees of freedom (DOFs) position/attitude control of the MAV model were conducted. This newly developed system could control the MAV model rapidly and accurately within almost 60mm for translational DOFs and 40deg for rotational DOFs inside of $300{\times}300mm$ test section. In addition, a static wind tunnel test was conducted to verify the aerodynamic force measurement capability. It turned out that this system could accurately measure the aerodynamic forces in low Reynolds number, even for the weak forces which were hard to measure using typical balance system, without making any mechanical contact with the MAV model.

노인의 정적 균형 수행력이 보행에 미치는 영향 (Effect of Static Balance Performance on Gait in Elderly)

  • 김태윤
    • The Journal of Korean Physical Therapy
    • /
    • 제14권2호
    • /
    • pp.74-85
    • /
    • 2002
  • The purpose of this study was to investigate the effect of static balance performance on gait in elderly. Subjects were twenty four members living in Gwangju(12males, 12females), between 65 and 81 years of age. The Force platform was used to measured static balance performance and gait analyzed the 3-D Motion Analysis The results of this study were as follow ; 1. The postural sway showed, The mean value of toe-heel was $1.41\pm0.51cm$ and left-right was $063\pm0.20cm$. In gait analysis, the mean value of each variable were swing phase $40.5\pm9.65\%$, stance phase $59.5\pm9.65\%$, stride length 0.79m, cadence $0.83\pm0.44step/sec$, velocity $0.57\pm0.32m/sec$, Knee up $34.7\pm31.0^{\circ}$, Knee down $-53.6\pm40.14^{\circ}$. Ankle up $12.14\pm13.94^{\circ}$, Ankle down $-16.8\pm25.0^{\circ}$ showed. 2. The correlation matrix between L-R sway and Toe-heel sway and gait variables was not showed. 3. In multiple regression test, there were no related variable.

  • PDF

축대칭 쉘 요소의 유한요소 수식화와 지반공학적 활용 (Numerical Formulation of Axisymmetric Shell Element and Its Application to Geotechnical Problems)

  • 신호성;김진욱
    • 한국지반공학회논문집
    • /
    • 제36권12호
    • /
    • pp.27-34
    • /
    • 2020
  • 구조물에 대한 축대칭 쉘요소는 지반과 구조물의 상호작용에 대한 유한요소해석에서 효율성과 정확성을 높이게 된다. 본 논문에서는 Kirchhoff 이론에 근거한 축대칭 쉘요소의 힘평형 방정식과 모멘트 평형 방정식을 유도하였다. 축방향 변형에 대한 지배방정식은 등매개변수 형상함수를 이용한 Galerkin 수식화를 수행하고, 휨에 대한 지배방정식은 고차의 형상함수를 이용하였다. 개발된 축대칭 쉘요소는 지반과의 연계해석을 위하여 지반해석 유한요소 프로그램인 Geo-COUS에 결합하였다. 원형판과 액체 저장 탱크에 대한 예제해석을 통하여 개발된 요소의 정확성을 확인하였다. 그리고 축대칭 쉘요소에 대한 에너지 평형방정식을 제시하였다.

경사진 원형관에서 표면장력과 중력에 의한 비뉴턴 유체(멱법칙 모델)의 유동 및 변위 (Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube)

  • 모정하
    • 대한기계학회논문집B
    • /
    • 제38권1호
    • /
    • pp.9-16
    • /
    • 2014
  • 본 논문은 경사진 원형관에서 표면장력과 중력으로 구동되는 비뉴턴 유체(멱법칙 모델)의 유동 및 변위를 이론적으로 연구한 것이다. 그리고 표면장력에 의하여 연속적으로 원형관 내로 유입되는 비뉴턴 유체의 변위를 기술하기 위한 지배방정식을 처음으로 개발하였다. 뉴턴의 운동방정식으로부터 유도된 식은 2계 비선형이며 비제차인 형태의 상미분 방정식이다. 지배방정식의 해를 수평관에서 변위를 시간의 함수로 기술한 식 및 실험과 비교한 결과 정량적으로 동일한 일치를 보였다. 여기에 더하여 정상상태인 힘의 균형식의 결과에 대해서도 정확한 일치로 나타남을 확인할 수 있었다.

Analysis of slope stability based on evaluation of force balance

  • Razdolsky, A.G.;Yankelevsky, D.Z.;Karinski, Y.S.
    • Structural Engineering and Mechanics
    • /
    • 제20권3호
    • /
    • pp.313-334
    • /
    • 2005
  • The paper presents a new approach for the analysis of slope stability that is based on the numerical solution of a differential equation, which describes the thrust force distribution within the potential sliding mass. It is based on the evaluation of the thrust force value at the endpoint of the slip line. A coupled approximation of the slip and thrust lines is applied. The model is based on subdivision of the sliding mass into slices that are normal to the slip line and the equilibrium differential equation is obtained as the slice width approaches zero. Opposed to common iterative limit equilibrium procedures the present method is straightforward and gives an estimate of slope stability at the value of the safety factor prescribed in advance by standard requirements. Considering the location of the thrust line within the soil mass above the trial slip line eliminates the possible development of a tensile thrust force in the stable and critical states of the slope. The location of the upper boundary point of the thrust line is determined by the equilibrium of the upper triangular slice. The method can be applied to any smooth shape of a slip line, i.e., to a slip line without break points. An approximation of the slip and thrust lines by quadratic parabolas is used in the numerical examples for a series of slopes.

CMP시 연마입자에 작용하는 마찰력에 관한 연구 (A study on the friction force caused by abrasives in chemical mechanical polishing)

  • 김구연;김형재;박범영;정영석;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1312-1315
    • /
    • 2004
  • Chemical Mechanical Polishing is referred to as a three body tribological system, because it includes two solids in relative motion and the slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason of not only the friction force but also material removal during polishing. The friction force generated by the abrasives was inspected with the change of abrasive size and concentration in this paper. The variation of coefficient of friction with abrasive concentration and size could result from the condition of contact and load balance between wafer and abrasives carried by pad asperity. The simulation was performed in this paper and compared with the result of experiment. The material removal rate also estimated with abrasive concentration and size increasement.

  • PDF

스프링부착 금형을 가진 다단 축대칭 단조공정의 유한요소해석-단조시뮬레이터 공정적용 사례(3) (Finite Element Analysis of a Multi-Stage Axisymmetric Forging Process Having A Spring-Attached Die)

  • 전만수;이석원;정재헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.93-100
    • /
    • 1996
  • In this paper, a computer simulationtechnique for the forging process having a spring-attached die was presented . The penalty rigid-thermoviscoplastic finite element method was empolyed together with an interatively force-balancing method, in which the convergence was achieved when the forming load and the spring reaction force are in equilibrium within the user-specified allowable accuracy. The force balance was controled by adjusting the velocity of the spring-attched die. th minimize the number of internations, a velocity estimating schemewas proposed. Two application examples found in the related company were given. In the first application example, the predicted metal folw lines were compared with the acturally forged ones. in the second example, a hot forging process with a spring-attached die was simulated and the analyzed results were discussed in order to investigated the effects of spring-attached dies on the metal flow lines and the forming loads.

  • PDF

철근콘크리트 슬래브의 진동제어 (Vibration Control of Reinforced Concrete Slabs)

  • 변근주;노병철;유동우;이호범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.201-206
    • /
    • 1993
  • As the vibration loads are variable and the design criteria are more strict, in this study, the dynamic characteristics of the slab is analyzed and the and the vibration is controlled for the special peculiarity of structures. First, the procedure of dynamic analysis is developed by the finite element method and then examined by using the slab model tests. Second, in order to improve the dynamic characteristics, the effects of the number of supports, material properties, position of exciting force, added mass and dynamic balance on the dynamic behavior of reinforced concrete slabs are analysed. It is concluded that the vibration can be controlled by the change in the natural frequency of system and the use of the high-strength concrete or polymer impregnated concrete (PIC), and the dynamic characteristics can be considerably affected by the arrangement of equipments, added mass, and dynamic balance, etc.

  • PDF

Effect of Multisensory Intervention on Locomotor Function in Older Adults with a History of Frequent Falls

  • You, Sung-Hyun
    • 한국전문물리치료학회지
    • /
    • 제11권4호
    • /
    • pp.51-60
    • /
    • 2004
  • Falls are common, costly, and a leading cause of death among older adults. The major predisposing factors of a fall may include age-related deterioration in the dynamic system composed of auditory, somatosensory, vestibular, visual, musculoskeletal, and neuromuscular subsystems. Older adults with a history of frequent falls demonstrated significant reductions in gait velocity, muscle force production, and balance performance. These altered neuromechanical characteristics may be further exaggerated when faced with conflicting multisensory conditions. Despite the important contribution of multisensory function on the sensorimotor system during postural and locomotor tasks, it remains unclear whether multisensory intervention will produce dynamic balance improvement during locomotion in older adults with a history of frequent falls. Therefore, the purpose of this paper is to address important factors associated with falls in elderly adults and provide theoretical rationale for a multisensory intervention program model.

  • PDF

경사로에서 세그웨이 로봇의 주행 속도를 통한 경사각 추정 (Estimate the Inclination Angle using Traveling Speed of Segway Robot on the Slope)

  • 정희인;이상용;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1164-1169
    • /
    • 2014
  • This paper proposes an angle estimation of Segway robot for the slop driving. Most of Segway robot was controlled by pose control of keeping robot's balance and motor control of driving. In motor control, we analyzed Segway robot kinetically and estimated an angle of inclination using the velocity that depends on input force. In pose control, also, we used PD controller and evaluated a stability of controller through MATLAB simulation. Assuming the robot keeps its balance stably using controller, we could linearize dynamics. We could obtain the result through the experiment which estimates an angle using the velocity of Segway robot that is derived from linearized dynamics.