• Title/Summary/Keyword: Force/Torque sensor

Search Result 132, Processing Time 0.041 seconds

Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System (접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립)

  • 강이석;김근묵;윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2315-2327
    • /
    • 1992
  • A robot assembly method which uses configuration and force/torque information of tactile sensor system and performs chamferless peg-in-hole tasks is suggested and experimentally studied. When the robot gripes the peg with random orientation, the realignment of the peg to the hole center line is successfully performed with the gripping configuration information of the tactile sensor and the inverse kinematics of the robot. The force/torque information of the tactile sensor makes it possible to control the contacting force between mating parts during hole search stage. The suggested algorithm employs a hybrid position/force control and the experiments show that the algorithm accomplishes well peg-in-hole tasks with permissible small contacting force. The chamferless peg-in-hole tasks with smaller clearance than the robot repeatibility can be excuted without any loss or deformation of mating parts. This study the possibility of precise and chamferless parts mating by robot and tactile sensor system.

Development of Force/Torque Sensor and Compliance Algorithm for Assembly Robots (조립용 로보트의 힘.토오크 센서 및 컴플라이언스 알고리즘의 개발)

  • Ko, Nak-Yong;Ko, Myoung-Sam;Ha, In-Joong;Lee, Bum-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.244-248
    • /
    • 1987
  • The force/torque sensor for robot is developed. The compliance algorithm for peg-in-hole insertion task using the forec/troque sensor is developed. The system consists of an IBM PC, robot, force/torque sensor, strain meter, A/D board, and interface board. The IBM PC functions as a main processor and the robot controller as a slave processor. The sensor is constructed to measure $T_x$, $T_y$, $F_z$ which are necessary to precisely execute a peg-in-hole insertion task by SCARA type assembly robot. The outputs of sensor are analyzed. On the basis of the analysis, compliance algorithm for peg-in-hole insertion task is developed. Some comments concerning the development of wrist force/torque sensor and compliance algorithm are given.

  • PDF

A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle (4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구)

  • Park, Jae-Young;Shim, Woojin;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.

Development of a Joint Torque Sensor Fully Integrated with an Actuator

  • Kim, Bong-Seok;Yun, Seung-Kook;Kang, Sung-Chul;Hwang, Chang-Soon;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1679-1683
    • /
    • 2005
  • This paper suggests the new type of a joint torque sensor which is attached at each joint of a manipulator for making compliance. Previous six axis force/torque sensors are high cost and installed end-effector of the manipulator. However, torque on links of previous an end-effector cannot be measured. We design a joint torque sensor that can be fully integrated with an actuator in order to measure applying torque of the manipulator. The sensor system is designed through the structural analysis. The proposed joint torque sensors are installed to the 6 DOF manipulator of a mobile robot for hazardous works and we implemented experiments of measuring applied torque to the manipulator. By the experiment, we proved that the proposed low-cost joint torque sensor gives acceptable performance when we control a manipulator.

  • PDF

Force control of the five-link robot using wrist force sensor (손목힘 센서를 이용한 5축 로봇의 힘제어)

  • 허영태;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.552-555
    • /
    • 1996
  • In this paper, we present a force control of a five-axes robot, using an impedance model. Tasks such as assembly, grinding, and deburring, which involve extensive contact with the environment, are better handled by controlling the forces of interaction between the manipulator and the environment. The five-link articulated robot is equipped with a wrist force sensor which consists of an array of strain gauges and can delineate the three components of the vector force along the three axes of the sensor coordinate frame, and the three components of the torque about these axes. For the precise control of the contact force, impedance models of a robot and the environment are defined. Experimental results are shown.

  • PDF

Precise assembly task using sensor fusion technology (센서퓨젼 기술을 이용한 정밀조립작업)

  • 이종길;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.287-292
    • /
    • 1993
  • We use three sensors such as a vision sensor, a proximity sensor, and a force/torque sensor fused by fuzzy logic in a peg-in-hole task. The vision and proximity sensors are usually used for gross motion control and the information is used here to position the peg around the hole. The force/torque sensor is used for fine motion control and the information is used to insert the peg into the hole precisely. Throughout the task, the information of all the three sensors is fused by a fuzzy logic controller. Some simulation results are also presented for verification.

  • PDF

Active Stick Control using Frictional Torque Compensation

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.90.6-90
    • /
    • 2002
  • An active stick which has the variable force-feel characteristics is developed. A combined position and force control strategy is mechanized using a 2-axis built-in force sensor and LVDT. The 2-axis force sensor which measures the stick force felt by the operator is developed by using strain gages and appropriate instrumental amplifiers. A mathematical model of the active stick dynamics is derived, and compared with the experimental results. The frictional torque of the stick due to the mechanical contacts of several parts makes the experimental frequency responses to be dependent on the magnitude of excitation signal, and the precision closed loop control to be difficult. A friction observe...

  • PDF

Joint Module with Joint Torque Sensor Having Disk-type Coupling for Torque Error Reduction (토크 오차 감소를 위한 디스크형 커플링을 갖는 토크센서가 내장된 로봇 관절모듈)

  • Min, Jae-Kyung;Kim, Hwi-Su;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.133-138
    • /
    • 2016
  • Force control and collision detection for a robot are usually conducted using a 6-axis force/torque sensor mounted at the end-effector. However, this scheme suffers from high-cost and the inability to detect collisions at the robot body. As an alternative, joint torque sensors embedded in each joint were used, which also suffered from various errors in torque measurement. To resolve this problem, a robot joint module with an improved joint torque sensor is proposed in this study. In the proposed torque sensor, a cross-roller bearing and disk-type coupling are added to prevent the moment load from adversely affecting the measurement of the joint torque under consideration. This joint design also aims to reduce the stress induced during the assembly process of the sensor. The performance of the proposed joint torque sensor was verified through various experiments.