• Title/Summary/Keyword: Forage use

Search Result 220, Processing Time 0.026 seconds

Analysis of the amino acid contents in the various parts of the forage corn 'Gwangpyungok'

  • Jung, Jeong Sung;Kim, Won Ho;Cho, Jin-Woong;Choi, Ki-Choon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.379-384
    • /
    • 2018
  • In this study, we analyzed the amino acid contents of corn to provide basic data for promoting the use of proteins in livestock. The present study was done to examine the amino acid contents of the corn 'Gwangpyungok' grown in a natural field at the National Institute of Animal Science, Cheonan province, Korea, in 2016. Gwangpyungok, which is Korean corn cultivar, was used as the sample to provide basic data for promoting the use of proteins in livestock by analyzing the amino acid contents of each part of corn as a breed that is adaptable to the environment of Korea. The asparagine acid content was the highest in the leaf blade among the parts of corn, and the glutamic acid content was the highest in the corn ear, stem, leaf sheath, corn bract and inflorescence. The essential amino acids in the corn ear, leaf blade and inflorescence revealed that their contents were in the following order: leucine > phenylalanine > valine > threonine > lysine > isoleucine, and in the inflorescences and stem, leaf sheath and corn bract, their contents were in following order: leucine > valine > phenylalanine > threonine > lysine > isoleucine. Therefore, further research on the nutritional aspects of forage must be performed because livestock growth is influenced by the nutritive value of the various parts of forage.

Free Range Hens Use the Range More When the Outdoor Environment Is Enriched

  • Nagle, T.A.D.;Glatz, P.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.584-591
    • /
    • 2012
  • To evaluate the role of using forage, shade and shelterbelts in attracting birds into the range, three trials were undertaken with free range layers both on a research facility and on commercial farms. Each of the trials on the free range research facility in South Australia used a total of 120 laying hens (Hyline Brown). Birds were housed in an eco-shelter which had 6 internal pens of equal size with a free range area adjoining the shelter. The on-farm trials were undertaken on commercial free range layer farms in the Darling Downs in Southeast Queensland with bird numbers on farms ranging from 2,000-6,800 hens. The first research trial examined the role of shaded areas in the range; the second trial examined the role of forage and the third trial examined the influence of shelterbelts in the range. These treatments were compared to a free range area with no enrichment. Aggressive feather pecking was only observed on a few occasions in all of the trials due to the low bird numbers housed. Enriching the free range environment attracted more birds into the range. Shaded areas were used by 18% of the hens with a tendency (p = 0.07) for more hens to be in the paddock. When forage was provided in paddocks more control birds (55%) were observed in the range in morning than in the afternoon (30%) while for the forage treatments 45% of the birds were in the range both during the morning and afternoon. When shelterbelts were provided there was a significantly (p<0.05) higher % of birds in the range (43% vs. 24%) and greater numbers of birds were observed in areas further away from the poultry house. The results from the on-farm trials mirrored the research trials. Overall 3 times more hens used the shaded areas than the non shaded areas, with slightly more using the shade in the morning than in the afternoon. As the environmental temperature increased the number of birds using the outdoor shade also increased. Overall 17 times more hens used the shelterbelt areas than the control areas, with slightly more using the shelterbelts in the afternoon than in the morning. Approximately 17 times more birds used the forage areas compared to the control area in the corresponding range. There were 8 times more birds using a hay bale enriched area compared to the area with no hay bales. The use of forage sources (including hay bales) were the most successful method on-farm to attract birds into the range followed by shelterbelts and artificial shade. Free range egg farmers are encouraged to provide pasture, shaded areas and shelterbelts to attract birds into the free range.

Effect of Nitrogen Fertilization Levels and its Split Application of Nitrogen on Growth Characters and Productivity in Sorghum × Sudangrass Hybrids [Sorghum bicolor (L.) Moench]

  • Jung, Jeong Sung;Kim, Young-Jin;Kim, Won Ho;Lee, Sang-Hoon;Park, Hyung Soo;Choi, Ki Choon;Lee, Ki-Won;Hwang, Tae-Young;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • Nitrogen (N) fertilizer management is one of the important aspects of economic production of sorghums in sustainable agriculture. The aim of the study was to evaluate the effects of different N application rates and its split N application methods on productivity, growth characteristics, N accumulation, N use efficiency (NUE), and feed value of Sorghum ${\times}$ Sudangrass hybrids. Treatments consisted of five N application rates (0, 150, 200, 250, and $300kg\;ha^{-1}$) and two split N application methods (40% in basal N, 30% at the growing stage, and 30% after the first harvest vs. 50% in basal N and 50% after the first harvest). Plant height, leaf width, and stem diameter were increased ($p{\leq}0.05$) with increasing N fertility rates at each harvest. Chlorophyll content (expressed as SPAD values) was the highest at a rate of $300\;kg\;N\;ha^{-1)$ (first harvest, 46.32; second harvest, 33.09). It was the lowest at zero N (first harvest, 21.56; second harvest, 18.5). Total N, N uptake, and NUE were increased with higher N rates. Split N application had little effect on total N, amount of N uptake, or NUE. Total dry matter yields were the highest ($21,715\;kg\;ha^{-1}$) at a rate of $300\;kg\;N\;ha^{-1}$. It was the lowest ($10,054\;kg\;ha^{-1}$) at zero N. Our results suggest that more than $300\;kg\;N\;ha^{-1}$ can improve dry matter yield to be above 116% compared to zero N, thus enhancing the agronomic characters of sorghums. However, no significant effect had been found for split N application. Further work is needed to determine the optimal N levels and the effect of split N application rates.

Efficient Agrobacterium-Mediated Transformation of Alfalfa Using Secondary Somatic Embryogenic Callus (알팔파의 이차 캘러스를 이용한 Agrobacterium에 의한 효율적인 형질 전환)

  • 이병현;원성혜;이효신;김기용;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • An efficient method for Agrobacterium-mediated transformation of forage crop alfalfa (Medicago sativa L.) was established using secondary somatic embryogenic calli. Agrobacterium tumefaciens strain EHAlOl and a binary vector pIG121-Hm which has selection markers for kanamycin and hygromycin have been shown to be an efticient materials for alfalfa transformation. The secondary somatic embryogenic calli originated from hypocotyl explants of alfalfa were efficient infection materials for Agrobacterium EHAlOl and normally germinated into plantlets. The introduced gene (GUS) was constitutively expressed in all tissues of transgenic alfalfa with different expression levels. These results indicate that the use of pIG121-Hm vector, Agrobacterium EHAlOl and improved culture system of callus facilitate the transformation of alfalfa. (Key words : Agrobacterium, Alfalfa, Gene transfer, Transformation)

  • PDF

Effects of Charcoal Application on Ammonia Emission and Nitrogen Use Efficiency of Pig Slurry in the Vegetative Growth of Maize (Zea Mays L.)

  • Lee, Seung Bin;Park, Sang Hyun;Kim, Tae Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.280-286
    • /
    • 2021
  • The objective of this study was to prove the effect of pig slurry application with charcoal on nitrogen use efficiency (NUE), feed value and ammonia (NH3) emission from maize forage. The four treatments were applied: 1) non-pig slurry (only water as a control), 2) only pig slurry application (PS), 3) pig slurry application with large particle charcoal (LC), 4) pig slurry application with small particle charcoal (SC). The pig slurry was applied at a rate of 150 kg N ha-1, and the charcoal was applied at a rate of 300 kg ha-1 regardless of the size. To determine the feed value of maize, crude protein, dry matter intake, digestible dry matter, total digestible nutrient, and relative feed value were investigated. All feed value was increased by charcoal treatment compared to water and PS treatment. Also, the NUE for plant N was significantly higher in charcoal treatments (LC and SC) compared to PS treatment. On the other hand, there is no significant difference for feed value and NUE between LC and SC. The NH3 emission was significantly reduced 15.2% and 27.9% by LC and SC, respectively, compared to PS. Especially, SC significantly decreased NH3 emission by 15% compared to LC. The present study clearly showed that charcoal application exhibited positive potential in nitrogen use efficiency, feed value and reducing N losses through NH3 emission.

A Study on the Dry Matter Yield and Qualityof Festulolium braunii at Different Growing Stages (생육단계별 Festulolium braunii의 건물수량 및 사료가치 구명)

  • 이인덕;이형석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.2
    • /
    • pp.117-122
    • /
    • 1997
  • This experiment was conducted to evaluate the forage yield and quality and the possibility to provide Festulolium bmunii(Festuca pratensis $Huds{\times}Lolium$ mult~jlotum Lam.) as forage source in Korea. The Festuloliurn braunii were harvested at boot, heading and anthesis stage, respectively. The field trials were performed 6om 1994 to 1996 at the forage experimental field, College of agriculture, Chunpam National University. The results obtained were summarized as follows: 1. The date of boot, heading and anthesis stage of Festulolium bmunii observed in Taejon were May 12, May 23 and June 1 in 1995, and June 1, June 4 and June 9 in 1996, respectively. Winter survival percentage of Festulolium bmunii war ranged 6om 96% to 98% and summer survival percentage were 75-86%. It would suggest that Festulolium brawlii persisted well in the aspect of overwintering, while it wasn' t widely adapted to drought and high temperature in Taejon regions. 2. The CP content and DMD of Festulolium bmunii tended to decline as the growth stage advanced. The CP content and DMD of Festulolium bmunii were high at the boot stage and those at the anthesis stage were low. But fiber contents at the boot stage were lower than those at anthesis stage(P< 0.05). The yields of the DM and DDM with advancing the growing stage tended to increase, while there was no difference in the CPDM yields among stages. On the otherhand, the yields of DM and DDM at the anthesis stage were the highest (P< 0.05), but there was no difference in CPDM yield among stages. Based on the results mentioned above, it is suggested that Festulolium b m n i i has a possibility to use until the anthesis stage under the cutting regimes and that it has a potentiality to provide one of a good forage sources. %'ifqqiZ 43q *(College of Agriculture, Chungnam National Un~versity, Taejon 305-764, Korea)

  • PDF

Advances in the molecular breeding of forage crops for abiotic stress tolerance

  • Alam, Iftekhar;Kim, Kyung-Hee;Sharmin, Shamima Akhtar;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.425-441
    • /
    • 2010
  • Forages are the backbone of sustainable agriculture. They includes a wide variety of plant species ranging from grasses, such as tall fescue and bermudagrass, to herbaceous legumes, such as alfalfa and white clover. Abiotic stresses, especially salinity, drought, temperature extremes, high photon irradiance, and levels of inorganic solutes, are the limiting factors in the growth and productivity of major cultivated forage crops. Given the great complexity of forage species and the associated difficulties encountered in traditional breeding methods, the potential from molecular breeding in improving forage crops has been recognized. Plant engineering strategies for abiotic stress tolerance largely rely on the gene expression for enzymes involved in pathways leading to the synthesis of functional and structural metabolites, proteins that confer stress tolerance, or proteins in signaling and regulatory pathways. Genetic engineering allows researchers to control timing, tissue-specificity, and expression level for optimal function of the introduced genes. Thus, the use of either a constitutive or stress-inducible promoter may be useful in certain cases. In this review, we summarize the recent progress made towards the development of transgenic forage plants with improved tolerance to abiotic stresses.

Effects of Fly Ash Supplementation on the Corn, Rye and Alfalfa Yields by Fertilization of Livestock Waste Composting (석탄회 처리 가축분뇨 퇴비가 옥수수, 호맥 및 알팔파의 생산성에 미치는 영향)

  • 고영두;김재황;김두환;유성오;고병구;이수칠;이종찬;김삼철
    • Journal of Animal Environmental Science
    • /
    • v.5 no.1
    • /
    • pp.63-72
    • /
    • 1999
  • This study was carried out to improve utilization of fly ash. Each animal waste was mixed with fly ash and composted This compost used at forage crops with corn, rye and alfalfa to examine to examine the fertilized efficiency and investigated productivity of forage crops, composition of this copmost and effect of fly ash on soil characteristics and composition. Content of organic matte, P2O5, K2O, CaO, MgO, Mn and B at the soil, which is given fly ash, increased. After the test crops were harvested, pH of the soil was maintained about 7 and contents of organic matter, phosphoric aicd, K, Mg, and B was increased at the soil of used fly ash. As fly ash was mixed, each DM yield of corn and rye was increased 10∼13% and 14∼21% especially alfalfa was increased 35% at the soil which is mixed fly ash with cage layer manure. As fly ash was mixed, each Crude protein (CP) of corn and rye was increased 6∼17% and about 29%, especially, as fly and cage layer manure was mixed CP of alfalfa was increased 33%. In conclusion, as fly ash is mixed with anlmal waste and use at forage crops, It makes the soil good and improve the productivity of forage crops.

Characterising Forages for Ruminant Feeding

  • Dynes, R.A.;Henry, D.A.;Masters, D.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.116-123
    • /
    • 2003
  • Forages are the most important feed resource for ruminants worldwide, whether fed as pastures, forage crops or conserved hay, silage or haylage. There is large variability in the quality of forages so measurement and prediction of feeding value and nutritive value are essential for high levels of production. Within a commercial animal production system, methods of prediction must be inexpensive and rapid. At least 50% of the variation in feeding value of forages is due to variation in voluntary feed intake. Identification of the factors that constrain voluntary feed intake allows these differences to be managed and exploited in forage selection. Constraints to intake have been predicted using combinations of metabolic and physical factors within the animal while simple measurements such as the energy required to shear the plant material are related to constraints to intake with some plant material. Animals respond to both pre- and post-ingestive feedback signals from forages. Pre-ingestive signals may play a role in intake with signals including taste, odour and texture together with learned aversions to nutrients or toxins (post-ingestive feedback signals). The challenge to forage evaluation is identification of the factors which are most important contributors to these feedback signals. Empirical models incorporating chemical composition are also widely used. The models tend to be useful within the ranges of the datasets used in their development but none can claim to have universal application. Mechanistic models are becoming increasingly complex and sophisticated and incorporate both feed characteristics and use of biochemical pathways within the animal. Improvement in utilisation through the deliberate selection of pasture plants for high feeding value appears to have potential and has been poorly exploited. Use of Near Infrared Reflectance Spectroscopy is a simple method that offers significant potential for the preliminary screening of plants with genetic differences in feeding value. Near Infrared Reflectance Spectroscopy will only be as reliable as the calibration sets from which the equations are generated.

Effect of Nitrogen Fertilization on Growth, Forage Yield and Nitrogen Use of Sudangrass (질소시비에 대한 Sudangrass의 생육 및 수량반응과 질소이용성)

  • 윤진일;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.66-71
    • /
    • 1982
  • Field experiments of nitrogen application (0, 100, 200, 400, 800kg N/ha year) were carried out to study the nitrogen response of Sudangrass at College Farm, Seoul National Univ., in 1979 and 1980. Dry matter yield and leaf area index increased up to 400kg N/ha in 1979 and 800kg N/ha in 1980. The forage yield of 1980 was less than that of 1979, due to the extraordinarily low temperature and the decreased solar radiation during summer. Total nitrogen contents in forage increased with nitrogen application, but maximum contents were found either 400 or 800kg N levels depend on each cutting stages. Nitrate nitrogen content in forage exceded over 2000 ppm at 800kg N application. Overall percentages of N recovery were below 50% with average 34%. Net assimilation rate and nitrogen use efficiency of Sudangrass were improved in higher temperature and more sunlight condition during regrowth period.

  • PDF