• Title/Summary/Keyword: Footwear measuring system

Search Result 6, Processing Time 0.019 seconds

Studies on Clothing Comfort Evaluation of Footwear by Measuring Psychophysiological Response

  • Hosoya, Satoshi;Kamijo, masayoshi;Takatera, Masayuki;Sadoyama, Tsugutake
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.186-189
    • /
    • 2002
  • The footwear such as socks and shoes is the clothing which are necessary to our life. In this study, clothing comfort of the footwear was carried out by physiological responses and subjective evaluation. As a result, the effect to walking comfort by the height of a heel in female shoes became clear. Then suitability evaluation system of shoes was proposed from the measuring results. On the other hands, the clothing comfort of the hosiery was evaluated from ECG analysis. By this analysis, it became clear that the factor which influences the clothing comfort of the hosiery was the clothes pressure in the hosiery. In the future, plane shape of the foot and solid shape must be considered in order to design the hosiery.

  • PDF

Development of an Internal Measurement System for the Footwear using Laser Sensor (레이저 센서를 이용한 신발 내측 측정장치 개발)

  • 이지용;김민주;이승수;박재덕;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.281-284
    • /
    • 2004
  • This paper presents studies on the development of an internal measurement system for the footwear using laser sensor. The measurement system gains to the height of the profile at internal footwear. It accomplishes the 3-axises control which uses ball screws, L-M guides and stepping motors. It is used a laser sensor at the measurement of the distance, and Labview is used for the control and the measurement. We can get the profile through reverse engineering for the LAST. The data of profile is fixed a heigh of the LAST. Then, we try to verify as compare the profile with one which is collected by Internal measurement system..

  • PDF

Development of Measurement Device for Bending Stiffness of Footwear (신발의 굽힘강성 측정 장비의 개발)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1078-1084
    • /
    • 2011
  • In design of sport footwear, bending stiffness of its toe part is an important factor though it can be hardly measured. This paper introduces a device for measuring the bending stiffness. The device is simply designed with aluminum frames, one AC motor, two load-cells, one encoder and control hardwares. The mechanism measuring the bending moment of a shoe is described. Then, it was used to observe how the midsole material and design of a sports shoe affect on its bending stiffness. For the experiments, various specimens prepared, where each midsole of the specimens is different in terms of material, thickness and hardness. With those specimens, experiments were performed by using the device and then the bending stiffness was computed by applying the least square curve fitting after the bending moment data were measured. The specimen with Poly-urethane(PU) midsole has the higher bending stiffness than the one with Phylon(PH) midsole, and the midsole thickness affects more on the bending stiffness than the midsole hardness. Based on those results, it can be concluded that the measurement device can provide consistent bending stiffness data to sports footwear and the bending stiffness of a footwear measured by the developed device can be used as a major parameter in the footwear design.

A Study on Verification of Shoe Last Grading System Based on Foot Measuring Data (발계측 자료에 기초한 신골 할출 시스템의 검증에 관한 연구)

  • Park, Hae-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.71-77
    • /
    • 2007
  • Shoe's size and shape are determined by the last that takes shape of foot because last is the mold of shoe in development and manufacturing process. Then adaptation between foot and shoe is dependent on the last. In mass shoe production, model size is developed in the first place, other sized lasts are made through the grading process based on model size. The most important factor in grading system is grading deviation that must be same amount induced from foot measuring database. At present, most of the last manufacturing companies in korea using 260mm as a standard foot model size. When length grading deviation is 5mm, the ball girth grading deviation is 3.7mm and the ball width grading deviation is 1.2mm. I verified existing grading system by comparing grading results with foot measuring data. Also, I proposed reasonable grading deviation and application method of grading system. From the analysis of foot measuring database, reasonable grading deviations are 1.22mm in ball width and 0.84mm in ankle height in case of length grading deviation is 5mm. I confirmed that the current grading system is very accurate. When we grade last from 230mm to 290mm by current grading system based on model size 260mm, there is grading error over 1mm in the front outside area of foot. This error level of 1mm is no problem in normal walking shoe's last, but it induces adaptation problems in sports and special purposed shoe's last. Therefore using of three standard model size is recommended in grading men's last for reducing grading deviation error under the level of 1mm. It is specifically described as 235mm in 225-245mm, 260mm in 250-270mm, 285mm in 275-295mm. According to the above recommended grading system, it is enough to measure only three foot sizes in case of foot measuring project for men's last development.

Application of Equivalent Walking Loads for Efficient Analysis of Floor Vibration Induced by Walking

  • Kim, Gee-Cheol;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.65-76
    • /
    • 2004
  • Walking loads are usually considered as nodal loads in the finite element vibration analysis of structures subjected to walking loads. Since most of the walking loads act on elements not nodes, the walking loads applied on the elements should be converted to the equivalent nodal walking loads. This paper begins with measuring walking loads by using a force plate equipped with load cells and investigates the characteristics of the walking loads with various walking rates. It is found that the walking loads are more affected by walking rates than other parameters such as pedestrian weight, type of footwear, surface condition of floor etc. The measured walking loads are used as input loads for a finite element model of walking induced vibration. Finally, this paper proposes the equivalent nodal walking loads that are converted from the walking loads acting on elements based on finite element shape functions. And the proposed equivalent walking loads are proved to be applicable for efficient analysis of floor vibration induced by walking loads.

  • PDF

Development of Wireless Real-Time Gas Detector System for Chemical Protection Performance Test of Personal Protective Equipment (화생방 보호의 성능평가를 위한 무선 실시간 가스 검출기 개발)

  • Kah, Dong-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.294-301
    • /
    • 2020
  • Man-In-Simulant Test(MIST) provides a test method to evaluate chemical protective equipments such as protective garments, gloves, footwear and gas mask. The MIST chamber is built to control concentration of chemical vapor that has a activity space for two persons. Non-toxic methyl-salicylate(MeS) is used to simulate chemical agent vapor. We carried out to measure inward leakage MeS vapors by using passive adsorbent dosimeter(PAD) which are placed on the skin at specific locations of the body while man is activity according to the standard procedure in MIST chamber. But more time is required for PADs and there is concern of contamination in PADs by recovering after experiment. Therefore detector for measuring in real time is necessary. In order to analyze in real time the contamination of the personal protective equipment inside the chemical environment, we have developed a wireless real-time gas detector. The detector consists of 8 gas-sensors and 1 control-board. The control-board includes a CPU for processing a signal, a power supply unit for biasing the sensor and Bluetooth-chipset for transmission of signals to external PC. All signals from gas-sensors are converted into digital signals simultaneously in the control-board. These digital signals are stored in external PC via Bluetooth wireless communication. The experiment is performed by using protective equipment worn on manikin. The detector is mounted inside protective equipment which is capable of providing a real-time monitoring inward leakage MeS vapor. Developed detector is demonstrated the feasibility as real-time detector for MIST.