• 제목/요약/키워드: Footings

검색결과 129건 처리시간 0.02초

Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.201-217
    • /
    • 2024
  • This study aims to develop a new model to obtain the minimum area in circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My" in function of σmax (available allowable soil pressure) R (radius of the circular footing), α (angle of inclination where the resultant moment appears), y0 (distance from the center of the footing to the neutral axis measured on the axis where the resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the ground works completely in compression. Three numerical problems are given to determine the lowest area for circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular footings will be of great help to engineers when the column is located on the center or edge of the footing.

말뚝캡이 선단지지 무리말뚝의 지지거동에 미치는 영향 (Influence of Pile Cap On The Behaviors of End Bearing Pile Groups)

  • 최영석;이수형;정충기;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.245-252
    • /
    • 2000
  • Model tests on free standing pile groups and piled footings with varying a pile spacing in two layered soils are carried out. The influence of pile cap on the behaviors of end bearing pile groups is analyzed by comparing the bearing behavior in piled footings with those in a single pile, a shallow footing(cap alone) and free standing pile groups. From the test results, it is found that the bearing characteristics of cap-soil-pile system are related with load levels and pile spacings. Before yield, the bearing resistance by cap is not fully mobilized, however, as the applied load increases, the bearing resistance of cap approaches to that of cap alone and settlement hardening occurs after yield due to the compaction caused by the contact pressure between cap and soil. By the cap-soil-pile interaction, shaft friction and point resistance of piles considerably increase with dependency of pile spacings. In two layered soil, the increasing effect of dilatancy in dense sandy soil adjacent to pile tips, increases the point resistance of pile.

  • PDF

평판재하시험으로부터 실제기초의 지지력 및 침하량 산정시 Scale Effect (Application of Scale Effect in Estimating Bearing Capacity and Settlement of Footing from Plate-Load Test)

  • 정형식;김도열
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.350-357
    • /
    • 2002
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were peformed with four different sizes of square plate, which is B=10, 15, 20 and 25cm respectively, on five different kinds of subsoil, which is pure sand(100:0), sand-clay mixed soil(75:25, 50:50, 25:75), and pure clay(0:100). Based on the analyzed results, this paper also proposed a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Applying the formular proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

  • PDF

The bearing capacity of square footings on a sand layer overlying clay

  • Uncuoglu, Erdal
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.287-311
    • /
    • 2015
  • The ultimate bearing capacity and failure mechanism of square footings resting on a sand layer over clay soil have been investigated numerically by performing a series of three-dimensional non-linear finite element analyses. The parameters investigated are the thickness of upper sand layer, strength of sand, undrained shear strength of lower clay and surcharge effect. The results obtained from finite element analyses were compared with those from previous design methods based on limit equilibrium approach. The results proved that the parameters investigated had considerable effect on the ultimate bearing capacity and failure mechanism occurring. It was also shown that the thickness of upper sand layer, the undrained shear strength of lower clay and the strength of sand are the most important parameters affecting the type of failure will occur. The value of the ultimate bearing capacity could be significantly different depending on the limit equilibrium method used.

Evaluation of the influence of interface elements for structure - isolated footing - soil interaction analysis

  • Rajashekhar Swamy, H.M.;Krishnamoorthy, A.;Prabakhara, D.L.;Bhavikatti, S.S.
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.65-83
    • /
    • 2011
  • In this study, two extreme cases of compatibility of the horizontal displacements between the foundation and soil are considered, for which the pressure and settlements of the isolated footings and member end actions in structural elements are obtained using the three dimensional models and numerical experiments. The first case considered is complete slip between foundation and soil, termed as the un-coupled analysis. In the second case of analysis, termed as the coupled analysis, complete welding is assumed of joints between the foundation and soil elements. The model and the corresponding computer program developed simulate these two extreme states of compatibility giving insight into the variation of horizontal displacements and horizontal stresses and their intricacies, for evaluation of the influence of using the interface elements in soil-structure interaction analysis of three dimensional multiscale structures supported by isolated footings.

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

Scale Effect를 고려한 기초의 지지력 및 침하량 산정을 위한 모형실험 (Model Tests on the Bearing Capacity and Settlement of Footing Considering Scale Effect)

  • 정형식;김도열;김정호
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.343-354
    • /
    • 2003
  • 재하판과 실제기초의 크기가 상이하므로 평판재하시험으로부터 실제 기초지반의 지지력 및 침하량을 산정할 때, Scale Effect가 고려되어야 한다. 본 논문에서는 5종류의 모형기초지반을 형성하고, 크기가 각각 l0cm, 15cm, 20cm, 25cm인 4가지 크기의 정사각형 평판으로 재하시험을 실시하여 재하판의 크기에 따른 지지력 및 침하 특성을 분석하였다. 또한 분석된 결과를 토대로 하여, 평판재하시험으로부터 실제기초의 지지력 및 침하량을 산정할 때, 모래와 점토의 혼합비율에 따라 Scale Effect를 합리적으로 고려할 수 있도록 식을 제안하였으며, 식에서 지지력 산정계수(a,b)와 침하량 산정계수(c,d)는 모래와 점토의 혼합비율에 따라 구할 수 있도록 그림으로 제시하였다. 지금까지는 현장기초지반에 대한 지지력 및 침하량을 합리적으로 평가할 수 없어 비경제적인 시공이 되어왔으나, 본 연구에서 제안한 지지력 및 침하량 산정방법에서는 모래와 점토의 혼합비율을 고려하여 기초지반의 지지력 및 침하량을 보다 합리적으로 추정할 수 있으므로 기초지반의 안정성 여부에 대한 확신과, 또한 경제적인 시공이 가능할 것으로 판단된다.

Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand

  • Dixit, Manish S.;Patil, Kailas A.
    • Geomechanics and Engineering
    • /
    • 제5권4호
    • /
    • pp.363-377
    • /
    • 2013
  • Any structure constructed on the earth is supported by the underlying soil. Foundation is an interfacing element between superstructure and the underlying soil that transmits the loads supported by the foundation including its self weight. Foundation design requires evaluation of safe bearing capacity along with both immediate and long term settlements. Weak and compressible soils are subjected to problems related to bearing capacity and settlement. The conventional method of design of footing requires sufficient safety against failure and the settlement must be kept within the allowable limit. These requirements are dependent on the bearing capacity of soil. Thus, the estimation of load carrying capacity of footing is the most important step in the design of foundation. A number of theoretical approaches, in-situ tests and laboratory model tests are available to find out the bearing capacity of footings. The reliability of any theory can be demonstrated by comparing it with the experimental results. Results from laboratory model tests on square footings resting on sand are presented in this paper. The variation of bearing capacity of sand below a model plate footing of square shape with variation in size, depth and the effect of permissible settlement are evaluated. A steel tank of size $900mm{\times}1200mm{\times}1000mm$ is used for conducting model tests. Bearing capacity factor $N_{\gamma}$ is evaluated and is compared with Terzaghi, Meyerhof, Hansen and Vesic's $N_{\gamma}$ values. From the experimental investigations it is found that, as the depth of sand cushion below the footing ($D_{sc}$) increases, ultimate bearing capacity and settlement values show an increasing trend up to a certain depth of sand cushion.