• Title/Summary/Keyword: Foot pressure analysis

Search Result 192, Processing Time 0.027 seconds

Analysis of the Gait Characteristics and Usability after Wearable Exoskeleton Robot Gait Training in Incomplete Spinal Cord Injury Patients with Industrial Accidents: A Preliminary Study

  • Bae, Young-Hyeon;Kim, Sung-Shin;Lee, Anna;Fong, Shirley S.M.
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.235-244
    • /
    • 2022
  • Objective: The aim of this study was to investigate of the foot plantar pressure and usability after gait training using the ExoAtlet wearable exoskeleton robot in an incomplete spinal cord injury (SCI) patient. Design: A case study Methods: Six participants with an asymmetry in motor and sensory function completed the gait training using ExoAtlet wearable exoskeleton robot for 15 sessions, five per weeks, 3weeks. They were divided into two groups (low and high strength group) and group differences were evaluated about session at stating of gait, gait distance at final session and foot plantar pressures and useability after training. Results: Low strength group was faster than high strength group on adaptation of robot gait. And high strength group increased faster than low strength group on the gait distance during training. In standing and gait, weaker leg was higher than stronger leg on mean foot plantar pressure in low strength group. And stronger leg was higher than weaker leg on foot plantar pressure in high strength group. The length of the anterior-posterior trajectory of the center of pressure during gait was similar in low strength group, but different in high strength group. useability was positive about ExoAtlet wearable exoskeleton gait after training. Conclusions: ExoAtlet wearable exoskeleton robot gait training was positive about improving gait in all participants regardless of differences in severity of symptoms and gait abnormalities.

Development of Gait Monitoring System Based on 3-axis Accelerometer and Foot Pressure Sensors (3축 가속도 센서와 족압 감지 시스템을 활용한 보행 모니터링 시스템 개발)

  • Ryu, In-Hwan;Lee, Sunwoo;Jeong, Hyungi;Byun, Kihoon;Kwon, Jang-Woo
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.199-206
    • /
    • 2016
  • Most Koreans walk having their toes in or out, because of their sedentary lifestyles. In addition, using smartphone while walking makes having a desirable walking posture even more difficult. The goal of this study is to make a simple system which easily analyze and inform any person his or her personal walking habit. To discriminate gait patterns, we developed a gait monitoring system using a 3-axis accelerometer and a foot pressure monitoring system. The developed system, with an accelerometer and a few pressure sensors, can acquire subject's foot pressure and how tilted his or her torso is. We analyzed the relationship between type of gate and sensor data using this information. As the result of analysis, we could find out that statistical parameters like standard deviation and root mean square are good for discriminating among torso postures, and k-nearest neighbor algorithm is good at clustering gait patterns. The developed system is expected to be applicable to medical or athletic fields at a low price.

Relationship between the radiographic parameters of the forefoot and plantar pressure in patients with hallux valgus (무지 외반증 환자에서 전족부의 방사선상의 지표들과 족저 압력의 관계)

  • Lee, Woo-Chun;Kwon, Kang-Jin;Chung, Ji-Hyun;Ko, Han-Suk
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • Purpose: To investigate the relationship between radiographic parameters of the forefoot and plantar pressure in patients with hallux valgus. Materials and Methods: Plantar pressures of 21 patients with hallux valgus were examined with EMED-ST system. The data were compared with the parameters on the simple weightbearing dorsoplantar radiographs of the feet. The radiographic parameters that were measured were hallux valgus angle, 1-2 intermetatarsal angle, relative lengths of the metatarsals which were measured with the methods described by Maestro et al. and Okuda et al. Results: Statistically significant correlation was found between peak pressures under 2, 3 metatarsal heads and the relative lengths of 2, 3 metatarsals which were measured with the method described by Maestro et al. However they could explain only 13% of the pressures under the 2, 3 metatarsal heads by multivariate analysis. Conclusion: These results suggest that we cannot predict the plantar pressures under the foot with the parameters on the simple weightbearing dorsoplantar radiographs of the feet.

  • PDF

Meta-Analysis of the Effectiveness on Foot-Reflexo-Massage for Cancer Patients (암환자에게 적용한 발반사 마사지 중재효과의 메타분석)

  • Kim, Min-Young;Oh, Pok-Ja
    • Asian Oncology Nursing
    • /
    • v.11 no.2
    • /
    • pp.127-135
    • /
    • 2011
  • Purpose: This study was performed to analyze the characteristics and effect sizes of intervention studies on foot-reflexo-massage applied to cancer patients. Methods: For meta-analysis, a total of 159 studies were retrieved from search engines such as RISS, nanet, KISS, richis and KoreaMed. 16 studies published from 1990 to 2010 were selected based on the inclusion criteria. The data were analyzed with the RevMan 5.0 program of Cochrane library. Results: 1) The mean score of 1 implement time on foot-reflexo-massage was 25.62 minutes, the average number of days was 4.12 days, and the total number of average intervention frequency was 4.25 times. 2) Intervention studies on foot-reflexo-massage included 9 studies on anxiety (56.3%), 7 for pain (43.8%), 5 for BP/pulse (31.3%), 5 for fatigue (31.3%), 3 for nausea/vomiting (18.8%), 3 for sleep satisfaction (18.8%), and 2 for depression (12.5%). 3) The effect sizes of the intervention studies that showed higher effect size were in order, anxiety (d=-1.76), fatigue (d=-1.43), depression (d=-1.03), nausea and vomiting (d=-0.83), pain (d=-0.77), pulse rate (d=-0.61), blood pressure (d=-0.55), and sleep satisfaction (d=0.43). Conclusion: This study suggests that foot-reflexo-massage can increase sleep satisfaction, whereas decreasing blood pressure, pulse rate, anxiety, fatigue, depression, nausea, vomiting and pain.

Effect of Independent Suspension Function of Hiking Boots on the Stability and Load of Foot (등산화 아웃솔의 독립적 서스펜션 기능이 발의 안정성 및 부하에 미치는 효과)

  • Lee, Ki-Kwang;Choi, Chi-Sun;Eun, Seon-Deok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.115-119
    • /
    • 2006
  • To investigate the effects of independent suspension technology(IST) of hiking boot on the stability and load of foot, eight participants performed medial and lateral drop landing from 33.4cm height and 85cm distance to uneven surface while wearing normal & IST hiking boots. For the stability of foot during the drop landing, the balance angle & suspension angle and rearfoot angle was analyzed using high-speed video analysis. Also kinetic analysis using the force plate and insole pressure measurement was conducted to analyze vertical & breaking ground reaction force and pressure distribution. Not only the balance angle & suspension angle but also rearfoot angle was improved with IST boots for lateral drop landing. These results indicate the IST boots may have the suspension function which keeps the foot to be stable during landing. However the IST boots did not show any effect for medial landing. This might be related to the hardness of medial part of outsole. Therefore the softer outsole of medial part could be recommended. Furthermore the impact force & breaking force and insole pressure were reduced with IST boot. These results means that IST boot has not only cushioning effect but also good grip effect. Therefore the hiking boots applied the independent suspension function may help to reduce fatigue and prevent injury such as ankle sprain in hiking on uneven surface.

Comparative Analysis on Gait Patterns of the Elderly and the Young Regarding to Foot Pressure (고령자와 청장년층의 발바닥 압력분포에 따른 보행패턴 비교 분석)

  • Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun;Lee, Tae-Yong;Park, Kwang-Suk;Chung, Gih-Sung;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The purpose of this study was to find the difference in gait patterns when elderly and young people walk by analyzing COP, Gait Line, Foot pressure pattern, and ensuring the original biomechanics technology of developing high performance footwear for the elderly. The subjects who took part in the test consist of 20 elderly people and 20 young people. The physical features of the elderly people that were recruited for the study are as below: 20 healthy male subjects(elderly people) with an average age of 75.43 yrs(S.D 6.46 yrs), weight of 68.10 kg(S.D 0.94 kg) and a height of 168.65 cm(S.D 1.47 cm). Foot pressure pattern data was collected using a EMED-AT system(Novel Gmbh, Germany) operating at the 50 Hz during walking. The results are as follow : COP route of the elderly leans to lateral compared to the young, and Gait Line from heel to toe is not clear and laterally curved. At the same time, a contact are aonthe midfoot is high compared to the young, and maximum force of the forefoot is low. As a result of analysis, in order to develop high performance footwear for the elderly, it is necessary to develop lasts and soles reflecting the elderly's gait patterns.

Kinetic Analysis of Foot Balance and Gait Patterns in Patients with Adult Spinal Disease (성인 척추질환자의 발균형 및 보행형태에 대한 운동역학적 분석)

  • Park, Jae Soung;Lee, Joong Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2019
  • Objective: The aim of this study was to provide kinematic data on the characteristics of spinal disease patients by comparing and analyzing kinematic variables related to foot balance and gait pattern of spinal disease. Method: The subjects of the study included 40 adult men and 60 adult women who visited the hospital in Busan. Patients who were diagnosed with spinal disease by a physician through X-ray examination were selected as subjects for the diagnosis of vertebral disc herniation, spinal stenosis, spinal disease diagnosed with spinal disease and the general public. Left and right foot pressure and contact area were checked by Gaitview pro meter. X-ray photographs were taken with a Zen-2090 mobile fluoroscopy under physicians' direct participation. One-way ANOVA was performed to compare the differences between the kinematic variables and post-hoc was performed by the Duncan method. Results: The difference in contact area between the left foot and the right foot was $115.30{\pm}14.15cm^2$ in the left side and $124.25{\pm}13.65cm^2$ in the left side in the spinal disease patients. The difference in pressure between the left and right side of the spinal disease patients was wider than that of the general people. Especially, the right side of the spinal disease patients showed a larger area of left foot contact than the general population. Conclusion: Spinal disease patients have wider contact area of the left foot than those of the general population. In the case of right spinal disease, the left foot support area is widened due to pain. In the gait, women showed slightly more posterior body center than men, and the upper body muscle imbalance and immobilization due to the spinal disease caused imbalance of the muscles moving to the lower limb, It was analyzed to inhibit movement.

An Analysis of X-Factor, Triple X-Factor, and the Center of Pressure (COP) according to the Feel of the Golf Driver Swing

  • Kim, Yong-Seok;So, Jae-Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.265-272
    • /
    • 2016
  • Objective: The aim of this study was to analyze X-factor, triple X-factor, and the center of pressure (COP) according to the feel of golf driver swing. Method: For this research, 9 golfers from the Korea Professional Golfers' Association (age: $30.11{\pm}2.98yrs$, height: $178.00{\pm}8.42cm$, weight: $76.22{\pm}8.42kg$, experience: $10.06{\pm}3.11yrs$) were recruited to participate in the experiment. Twelve Motion Analysis Eagle-4 cameras were installed and an image analysis was conducted by using the NLT (non-linear transformation) method, and 2 units of Kistler type 5233A dynamometer were used to measure ground reaction force. The sampling ratio was set at 1000 Hz. The golfers each took 10 swings by using their own driver, and chose the best and worse feel from among 10 shots. A paired-sample t-test was used to analyze the results. Results: In regard to feel, no change in head speed, X-factor, and the triple X-factor's X-factor stretch, hip rise, and head swivel, was observed (p>.05). Regarding ground reaction force, a difference was observed between the top of the backswing (p<.05) and impact (p<.05) in the vertical force of the left foot. For COP, a difference was also observed between the mid backswing (p<.001), late backswing (p<.001), and top of the backswing (p<.05) for the right foot X-axis and Y-axis mid follow through (p<.01). Conclusion: It can be reasoned that, irrespective of feel, the head speed, X-factor and triple X-factor's X-factor stretch, hip rise and head swivel did not have an effect on drive distance for domestic golfers, and the vertical reaction force of the left foot and left-right movement span's pressure dispersal of the right foot had an increasing effect on drive distance.

Analysis of Lower-Limb Motion during Walking on Various Types of Terrain in Daily Life

  • Kim, Myeongkyu;Lee, Donghun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.319-341
    • /
    • 2016
  • Objective:This research analyzed the lower-limb motion in kinetic and kinematic way while walking on various terrains to develop Foot-Ground Contact Detection (FGCD) algorithm using the Inertial Measurement Unit (IMU). Background: To estimate the location of human in GPS-denied environments, it is well known that the lower-limb kinematics based on IMU sensors, and pressure insoles are very useful. IMU is mainly used to solve the lower-limb kinematics, and pressure insole are mainly used to detect the foot-ground contacts in stance phase. However, the use of multiple sensors are not desirable in most cases. Therefore, only IMU based FGCD can be an efficient method. Method: Orientation and acceleration of lower-limb of 10 participants were measured using IMU while walking on flat ground, ascending and descending slope and stairs. And the inertial information showing significant changes at the Heel strike (HS), Full contact (FC), Heel off (HO) and Toe off (TO) was analyzed. Results: The results confirm that pitch angle, rate of pitch angle of foot and shank, and acceleration in x, z directions of the foot are useful in detecting the four different contacts in five different walking terrain. Conclusion: IMU based FGCD Algorithm considering all walking terrain possible in daily life was successfully developed based on all IMU output signals showing significant changes at the four steps of stance phase. Application: The information of the contact between foot and ground can be used for solving lower-limb kinematics to estimating an individual's location and walking speed.