• Title/Summary/Keyword: Foot Sensor

Search Result 139, Processing Time 0.026 seconds

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

Shock-Wave Oscillation in a Supersonic Diffuser -Displacement Measurement of Mormal Shock-Wave- (초음속 디퓨져에서 충격파의 진동 (1) -수직충격파의 순간변위 측정-)

  • 김희동;엄용균;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.933-945
    • /
    • 1994
  • A shock-wave in a supersonic flow can be theoretically determined by a given pressure ratio at upstream and downstream flowfields, and then the obtained shock-wave is stable in its position. Under the practical situation in which the shock-wave interacts with the boundary layer along a solid wall, it cannot, however, be stable even for the given pressure ratio being independent of time and oscillates around a time-mean position. In the present study, oscillations of a weak normal shock-wave in a supersonic diffuser were measured by a Line Image Sensor(LIS), and they were compared with the data of the wall pressure fluctuations at the foot of the shock-wave interacting with the wall boundary layer. LIS was incorporated into a conventional schlieren optical system and its signal, instantaneous displacement of the interacting shock-wave, was analyzed by a statistical method. The results show that the displacement of an oscillating shock-wave increase with the upstream Mach number and the dominant frequency components of the oscillating shock-wave are below 200 Hz. Measurements indicated that shock-wave oscillations may not entirely be caused by the boundary layer separation. The statistical properties of oscillations appeared, however, to be significantly affected by shock-induced separation of turbulent boundary layer.

Experimental analysis of whiplash injury with hybrid III 50 percentile test dummy

  • Gocmen, Ulas;Gokler, Mustafa Ilhan
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.61-77
    • /
    • 2018
  • In this study, the effects of sitting position of the driver on the whiplash neck injury have been analyzed experimentally by using hybrid III series 50 percentile male crash test dummy. A testing platform consisting of vehicle ground, driver foot rest, driver seat and a 3-point seatbelt has been prepared. This testing platform and the instrumented crash test dummy are prepared for tests according to the Euro NCAP whiplash testing protocol. The prepared test set-up has been exposed to 3 different acceleration-time loading curves defined in the Euro NCAP whiplash testing protocol by performing sled tests. 9 different sled tests have been performed with the combinations of 3 different seating positions of the crash test dummy and 3 different acceleration-time loading curves. The sensor data obtained from the crash test dummy and high-speed videos taken are analyzed according to the injury assessments criteria defined in the Euro NCAP whiplash testing protocol and the criticality of the whiplash injury is defined. It is seen that the backset distance of the driver head with the headrest and the height difference of the top of the head of the driver with the headrest have a great importance on whiplash injuries.

The Development of a Steering Control Apparatus for the Two Wheel Driving Electric Vehicles (2륜구동 전기차량용 회전 제어 장치 개발)

  • Lim, Dong-gyun;Shon, Min-ho;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1115-1118
    • /
    • 2015
  • Two wheel type electric vehicles driving with the electric motors for guard are used increasingly at the airport and harbor place to move between narrow indoors. This type two wheel electric vehicles are powerd by batteries and using the steering control apparatus including multi sensors and handle operating device for forward and backward, rotating moving. At this research, we design sensor interfacing electronic control system use only the center of foot balance without the handle type steering apparatus. This design is for safety of drivers at one's cornering.

  • PDF

Evaluating Methods of Vibration Exposure and Ride Comfort in Car

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • Objective: This paper studies the method of measuring whole-body vibration in the car and terms associated. Background: Human exposure to vibration can be broadly classified as localized and whole-body vibration. The whole-body vibration affects the entire body of the exposed person. It is mainly transmitted through the seat surfaces, backrests, and through the floor to an individual sitting in the vehicle. It can affect the comfort, performance, and health of individuals. Method: Human responses to whole-body vibration can be evaluated by two main standards such as ISO 2631 and BS 6841. The vibration is measured at 8 axes - three translations at feet, 3 translations of hip and two translations of back proposed by Griffin. B&K's sensors used in this study are the 3-axes translational acceleration sensor to measure the translational accelerations at the hip, back and foot. Results: The parameters associated with the whole-body vibration in the car are frequency weightings, frequency weighted root-mean-square, vibration dose values, maximum transient vibration value, seat effective amplitude transmissibility, ride values and ride comfort. Conclusion: Studied the evaluating methods of vibration exposure and ride comfort. Application: Evaluation of whole-body vibration in the car.

A Study on the Estimation of Smartphone Movement Distance using Optical Flow Technology on a Limited Screen (제한된 화면에 광류 기술을 적용한 스마트폰 이동 거리 추정에 관한 연구)

  • Jung, Keunyoung;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.71-76
    • /
    • 2019
  • Research on indoor location tracking technology using smartphone is actively being carried out. Especially, the movement distance of the smartphone should be accurately measured and the movement route of the user should be displayed on the map. Location tracking technology using sensors mounted on smart phones has been used for a long time, but accuracy is not good enough to measure the moving distance of the user using only the sensor. Therefore, when the user moves the smartphone in a certain posture, it must research and develop an appropriate algorithm to measure the distance accurately. In this paper, we propose a method to reduce moving distance estimation error by removing user 's foot shape by limiting the screen of smartphone in pyramid - based optical flow estimation method.

Posture Stabilization Control of Biped Transformer Robot under Disturbances (이족 트랜스포머 로봇의 외란 대응 자세 안정화 제어)

  • Geun-Tae Kim;Myung-Hun Yeo;Jung-Yup Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • This paper describes the posture stabilization control of a bipedal transformer robot being developed for military use. An inverted pendulum model with a rectangular that considers the robot's inertia is proposed, and a posture stabilization moment that can maintain the body tilt angle is derived by applying disturbance observer and state feedback control. In addition, vertical force and posture stabilization moments that can maintain the body height and balance are derived through QP optimization to obtain the necessary torques and vertical force for each foot. The roll and pitch angles of the IMU sensor attached to the robot's feet are reflected in the ankle joint to enable flexible adaptation to changes in ground inclination. Finally, the effectiveness of the proposed algorithm in posture stabilization is verified by comparing and analyzing the difference in body tilt angle due to disturbances and ground inclination changes with and without algorithm application, using Gazebo dynamic simulation and a down-scale test platform.

Local Grid-based Multipath Routing Protocol for Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 지역적 격자 기반 다중 경로 전송 방안)

  • Yang, Taehun;Kim, Sangdae;Cho, Hyunchong;Kim, Cheonyong;Kim, Sang-Ha
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1428-1436
    • /
    • 2016
  • A multipath routing in wireless sensor networks (WSNs) provides advantage such as reliability improvement and load balancing by transmitting data through divided paths. For these reasons, existing multipath routing protocols divide path appropriately or create independent paths efficiently. However, when the sink node moves to avoid hotspot problem or satisfy the requirement of the applications, the existing protocols have to reconstruct multipath or exploit foot-print chaining mechanism. As a result, the existing protocols will shorten the lifetime of a network due to excessive energy consumption, and lose the advantage of multipath routing due to the merging of paths. To solve this problem, we propose a multipath creation and maintenance scheme to support the mobile sink node. The proposed protocol can be used to construct local grid structure with restricted area and exploit grid structure for constructing the multipath. The grid structure can also be extended depending on the movement of the sink node. In addition, the multipath can be partially reconstructed to prevent merging paths. Simulation results show that the proposed protocol is superior to the existing protocols in terms of energy efficiency and packet delivery ratio.

The Design and Implementation of a Real-Time FMD Cattle Burial Sites Monitoring System Based-on Wireless Environmental Sensors (u-EMS : 센서네트워크 기반의 가축매몰지 악취환경정보 실시간 모니터링 시스템 설계 및 구현)

  • Moon, Seung-Jin;Kim, Hong-Gyu;Park, Kyu-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1708-1721
    • /
    • 2011
  • Recent outbreak of cattle diseases such as foot-and-mouth disease(FMD) requires constant monitoring of burial sites of mass cull of cattles. However, current monitoring system takes environmental samples from burial sites with period of between one and two weeks, which makes it impossible for non-stop management of hazardous bio-waste. Therefore, in this study, we suggest an improved real-time environmental monitoring system for such bio-hazardous sites based on wireless sensor networks, which makes constant surveillance of the FMD burial sites possible. The system consists mainly several wireless environmental monitoring sensors(i.e dust, Co2, VOC, NH3, H2S, temperature, humidity) nodes and GPS location tracking nodes. Through analysis of the relayed of the environmental monitoring data via gateway, the system makes it possible for constant monitoring and quick response for emergency situation of the burial sites. In order to test the effectiveness of the system, we have installed a set of sensor to gas outlets of the burial sites, then collected and analyzed measured bio-sensing data. We have conducted simulated emergency test runs and was able to detect and monitor the foul smell constantly. With our study, we confirm that the preventive measures and quick response of bio environmental accident are possible with the help of a real-time environmental monitoring system.

The Effect of the Heel Rest on Braking Reaction Time while Driving Vehicle with Automatic Transmission (오토 차량 운전시 보조 발판이 제동 시간에 미치는 영향)

  • Kim, Jeong-Ryong;Jo, Yeong-Jin;Park, Ji-Su;Seo, Gyeong-Bae
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.53-58
    • /
    • 2006
  • The purpose of this study was to test the safety of the heel rest which was made for reducing the automobile driver's muscle fatigue with automatic transmission. Sixty subjects participated in the test, including ten males and ten females in 30s, 40s, 50s, respectively. Simulator consisted of automobile cockpit, accelerator and brake pedal sensor, heel rest. and driving displays. 30 seconds were given to subjects to be accustomed to the simulator environment. They also had one pre-trial to use the brake pedal according to the experimental scenario. They were told to step on the brake pedal immediately as soon as the red light was on the display The reaction time representing the foot travel time between accelerator and brake pedal was measured with/without the heel rest. In results, there was no significant difference in reaction time between conditions with/without heel rest. The result indicated that the heel rest used in this study would be a safe accessory for drivers who need to reduce the fatigue of the muscle or joint during driving.