• 제목/요약/키워드: Foot Pressure Distribution

검색결과 138건 처리시간 0.028초

Slip-Related Changes in Plantar Pressure Distribution, and Parameters for Early Detection of Slip Events

  • Choi, Seungyoung;Cho, Hyungpil;Kang, Boram;Lee, Dong Hun;Kim, Mi Jung;Jang, Seong Ho
    • Annals of Rehabilitation Medicine
    • /
    • 제39권6호
    • /
    • pp.897-904
    • /
    • 2015
  • Objective To investigate differences in plantar pressure distribution between a normal gait and unpredictable slip events to predict the initiation of the slipping process. Methods Eleven male participants were enrolled. Subjects walked onto a wooden tile, and two layers of oily vinyl sheet were placed on the expected spot of the 4th step to induce a slip. An insole pressure-measuring system was used to monitor plantar pressure distribution. This system measured plantar pressure in four regions (the toes, metatarsal head, arch, and heel) for three events: the step during normal gait; the recovered step, when the subject recovered from a slip; and the uncorrected, harmful slipped step. Four variables were analyzed: peak pressure (PP), contact time (CT), the pressure-time integral (PTI), and the instant of peak pressure (IPP). Results The plantar pressure pattern in the heel was unique, as compared with other parts of the sole. In the heel, PP, CT, and PTI values were high in slipped and recovered steps compared with normal steps. The IPP differed markedly among the three steps. The IPPs in the heel for the three events were, in descending order (from latest to earliest), slipped, recovered, and normal steps, whereas in the other regions the order was normal, recovered, and slipped steps. Finally, the metatarsal head-to-heel IPP ratios for the normal, recovered, and slipped steps were $6.1{\pm}2.9$, $3.1{\pm}3.0$, and $2.2{\pm}2.5$, respectively. Conclusion A distinctive plantar pressure pattern in the heel might be useful for early detection of a slip event to prevent slip-related injuries.

보행시 지반조건에 따른 팽이기초를 접목시킨 신발 족저압 분포 비교분석 (Top shoes foot pressure basis of the comparison analysis combine conical top foundation walking upon ground conditions)

  • 김연덕;김석진;민병헌;김상환
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.20-28
    • /
    • 2019
  • 본 논문은 지반 조건에 따라 현재 개발 중인 팽이기초를 접목한 신발과 일반적인 신발인 워킹화의 보행시 압력분포의 비교분석에 대한 연구이다. 일반적인 신발, 현재 개발 중인 팽이기초를 접목한 신발 두 가지 카테고리의 신발이 본 연구에 사용되었으며, 실험 대상은 260mm를 착용하는 정상발의 조건에 만족하는 15명의 20대 남성을 대상으로 단단한 지반, 모래 지반에서의 실험을 실시하였다. 보행 시 압력의 측정은 Techstorm사의 무선 Insole System 을 사용하여 측정하였으며 발의 7 Zone에서 족저압을 측정하였다. 연구 결과 신발과 지반 조건에 따라 다른 최대 힘, 평균 압력, 압력 분포도를 나타냈으며, 본 연구 결과 단단한 지반 및 모래 지반에서 발 부위에 따라 족저압 분산 효과가 일반적인 신발과 현재 개발 중인 팽이기초를 접목한 신발이 서로 상이한 것을 확인할 수 있었다. 향후 보다 지속적인 연구를 통해 다양한 고무 소재를 선택하여 추가적인 실험을 통해 단단한 지반 및 모래 지반에서 모두 착용 가능한 신발의 개발에 유용하게 사용될 것으로 기대된다.

IoT 환경에서 AI 기반의 당뇨발 진단을 위한 깔창 개발 (Development of Insole for AI-Based Diagnosis of Diabetic Foot Ulcers in IoT Environment)

  • 최원후;정태명;박지웅;이서후
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권3호
    • /
    • pp.83-90
    • /
    • 2022
  • 당뇨병은 오늘날 주변에서 흔히 찾아볼 수 있는 질병이며, 당뇨병성 족부 궤양(당뇨발)이라는 심각한 합병증으로 발전하는 사례 또한 많이 나타난다. 따라서 이를 사전에 진단하고 예방하는 것은 중요한 과제이며 본 논문에서 그 방안을 제시한다. 본문에서 소개하는 기존의 연구들을 바탕으로 발의 압력과 온도 정보는 당뇨발과 깊은 상관관계가 있음을 알 수 있으며, 해당 지표들을 측정하는 IoT 기기인 스마틴솔을 개발과정 및 아키텍쳐를 소개한다. 또한, 더 나아가 스마틴솔로 측정한 데이터들의 실제 당뇨발 진단을 위한 AI 분석 전처리 과정을 기술하며, 측정된 압력 그래프와 실제 사람의 발걸음 분포의 비교 등을 통해 실시간으로 수집하는 다중 정보들이 기존의 IoT 기기들보다 효율적이고 신뢰성 있다는 결과를 제시한다.

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.

유한요소 해석을 통한 실리콘 족적 센서의 감도 조절 및 설계 (Sensitivity Control and Design of the Silicone Foot Sensor Using FEM)

  • 성벽경;서형규;이진욱;권애란;김동환
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.1041-1050
    • /
    • 2014
  • A design and analysis for new foot sensor that measures pressure distribution while walking or running in daily life is introduced. In the process of the sensor design, the shape, mechanism composing of the sensor, and variables that dominate sensor's sensitivity are investigated. Through these variables analysis, an optimal shape and dimension were determined. The effects of variables on sensor's sensitivity and the relationship between each variable are proved by analyses and experiments.

구두 굽의 형태가 인체의 근골격계에 미치는 영향에 관한 연구 (The Study on Musculoskeletal Effects of Heel Types)

  • 이창민;정은희
    • 대한인간공학회지
    • /
    • 제23권1호
    • /
    • pp.39-48
    • /
    • 2004
  • In terms of women engaged in clerical job. working time of the workers who mainly keep standing with their high-heeled shoes on has been increasing. According]y. they are exposed to many kinds of foot deformation caused by loads of lower back and lower extremities due to high-heeled shoes. The type of heels they usually wear are diverse though the hight is same. In this study. we investigated most women's favorite styles of shoes concerned with heights. types and contact areas of the heels. Hence. we designed three kinds of shoes for an experiment: their contact areas with ground are 1 cm2. 2-4 cm2 and over 9 cm2 according to the heel heights. respectively. To investigate the biomechanical effects. analysis of motion and EMG were applied to the experiments. In addition. foot pressure distribution was measured for more detailed analysis. Six healthy young women were participated in this experiments. The result showed the heel becoming higher and narrower increased not only fluctuation of CBM(Center of Body Mass). but also the load of low back muscle and lower extremities. Accordingly. there was significant difference among types of the heel in terms of the role supporting load of the body. though the height is same. Especially. the difference among the pressures on a foot was most significant. In conclusion. we verified biomechanical effects are related with the contact area of a heel with ground as well as the hight.

The Effect of Stretching and Elastic Band Exercises Knee Space Distance and Plantar Pressure Distribution during Walking in Young Individuals with Genu Varum

  • Park, So-Ra;Ro, Hyo-Lyun;Namkoong, Seung
    • 대한물리의학회지
    • /
    • 제12권1호
    • /
    • pp.83-91
    • /
    • 2017
  • PURPOSE: The purpose of this study was to investigate the effects of stretching and elastic band exercise on the knee space distance and plantar pressure distribution in people with genu varum. METHODS: The subjects of this study were students of a college who had genu varum of 14 subjects. The subjects were randomly divided into two groups as a stretching group (n=7, 4 males and 3 females, age: $20.14{\pm}2.54years$, height: $167.1{\pm}9.78cm$, weight: $58.6{\pm}10.13kg$) and a Thera-band group (n=7, 5 males and 2 females, age: $19.85{\pm}2.04years$, height: $166.5{\pm}5.82cm$, weight: $54.2{\pm}5.59kg$). The stretching and the There-band exercises were performed three times per a week, for four weeks. We measured changes in plantar pressure during walking, using a Gait Analyzer and distance of both knees at pre and post-intervention. RESULTS: These results suggest that the space distance of both knees showed differences before and after the intervention. The plantar pressure distribution was no changes in both groups before and after the intervention except for the left foot in a stretching group. CONCLUSION: As a result, the space distance of knees in both groups was significantly reduced. These result suggested that the Thera-band and stretching exercises were effective ways in alleviating genu varum.

초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성) (Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics))

  • 홍종우
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

Effects of a Real-time Plantar Pressure Feedback during Gait Training on the Weight Distribution of the Paralyzed Side and Gait Function in Stroke Patients

  • Kim, Tae-Wu;Cha, Yong-Jun
    • 대한물리의학회지
    • /
    • 제17권2호
    • /
    • pp.53-62
    • /
    • 2022
  • PURPOSE: This study was conducted to investigate the effect of a real-time pressure feedback provided during gait training on the weight weight distribution of the inner part of mid-foot in paralyzed side and gait function in stroke patients. METHODS: A total of 24 patients with hemiplegic stroke in a rehabilitation hospital were randomly assigned to the experimental and control group. All participants (n = 24) performed 15 min of comprehensive rehabilitation therapy 5 times a week for a period of 4 weeks. Additionally, the experimental group and control group underwent gait training with a real time feedback and general gait training, respectively, for 15 min five times a week for 4 weeks. Weight distribution and gait function were measured before and after the 4-week training. RESULTS: Significant increases in the weight distribution (WD), stance time (ST) and step length (SL) of the paralyzed side, and a significant decrease in the 10 m walking test (10 MWT) observed after training in the two groups (p < .05). The experimental group showed larger changes in the all variables than the control group (WD, +10.5 kg vs. +8.8 kg, p < .05; ST, 12.8 s vs. 4.9 s, p < .05; SL, 4.9 cm vs. 1.7 cm, p < .05; 10 MWT, -3.5 s vs. -1.0 s, p < .05, respectively). CONCLUSION: Gait training with a real-time feedback might be effective in improving the normalization of weight bearing of the paralyzed lower extremity and gait function of stroke patients, and be considered to be a more effective gait training for improving the abilities than the general gait training.

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.