• Title/Summary/Keyword: Folylpolyglutamate synthetase

Search Result 2, Processing Time 0.021 seconds

Mutation Screening and Association Study of the Folylpolyglutamate Synthetase (FPGS) Gene with Susceptibility to Childhood Acute Lymphoblastic Leukemia

  • Piwkham, Duangjai;Siriboonpiputtana, Teerapong;Beuten, Joke;Pakakasama, Samart;Gelfond, Jonathan AL;Paisooksantivatana, Karan;Tomlinson, Gail E;Rerkamnuaychoke, Budsaba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4727-4732
    • /
    • 2015
  • Background: Folylpolyglutamate synthetase (FPGS), an important enzyme in the folate metabolic pathway, plays a central role in intracellular accumulation of folate and antifolate in several mammalian cell types. Loss of FPGS activity results in decreased cellular levels of antifolates and consequently to polyglutamatable antifolates in acute lymphoblastic leukemia (ALL). Materials and Methods: During May 1997 and December 2003, 134 children diagnosed with ALL were recruited from one hospital in Thailand. We performed a mutation analysis in the coding regions of the FPGS gene and the association between single nucleotide polymorphisms (SNPs) within FPGS in a case-control sample of childhood ALL patients. Mutation screening was conducted by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and subsequently with direct sequencing (n=72). Association analysis between common FPGS variants and ALL risk was done in 98 childhood ALL cases and 95 healthy volunteers recruited as controls. Results: Seven SNPs in the FPGS coding region were identified by mutation analysis, 3 of which (IVS13+55C>T, g.1297T>G, and g.1508C>T) were recognized as novel SNPs. Association analysis revealed 3 of 6 SNPs to confer significant increase in ALL risk these being rs7039798 (p=0.014, OR=2.14), rs1544105 (p=0.010, OR= 2.24), and rs10106 (p=0.026, OR=1.99). Conclusions: These findings suggested that common genetic polymorphisms in the FPGS coding region including rs7039789, rs1544105, and rs10106 are significantly associated with increased ALL risk in Thai children.

Association of Genetic Variations with Pemetrexed-Induced Cytotoxicity in Non-Small Cell Lung Cancer Cells (비소세포폐암 세포주에서 pemetrexed의 세포독성과 유전학적 다형성과의 상관성 조사)

  • Yoon, Seong-Ae;Choi, Jung-Ran;Kim, Jeong-Oh;Shin, Jung-Young;Zhang, XiangHua;Kang, Jin-Hyoung
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.103-112
    • /
    • 2010
  • Pemetrexed has demonstrated clinical activity in non-small cell lung cancer (NSCLC) as well as other solid tumors. It transports into the cells via reduced folate carrier (RFC) and is polyglutamated by folypolyglutamate synthetase (FPGS). Pemetrexed directly inhibits several folate-dependent enzymes such as thymidylate synthase (TS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT). We investigated the effects of genetic variations and the expression of RFC, FPGS, TS and DHFR enzymes on drug sensitivity to pemetrexed in NSCLC cells. Polymorphisms in RFC, FPGS, and DHFR were genotyped in four NSCLC cells - A549, PC14, HCC-1588, and H226. Real-time RT-PCR and Western blot was performed to evaluate mRNA transcripts and protein of these genes. The cytotoxicity of pemetrexed was measured by SRB assay. In PC14 and H226 cells, increased mRNA expressions of RFC and FPGS were associated with higher cytotoxicity to pemetrexed. 2R/2R genotype of TS and its increased mRNA expression were associated with drug resistance to pemetrexed in A549 cells, whereas 3R/3R genotype in TS with decreased mRNA expression was associated with higher sensitivity in H226 cells. After pemetrexed treatment, an inverse change of DHFR mRNA and protein expression was found. The strongest linkage disequilibrium (LD) was discovered between-1726C>T and -1188A>C SNP of DHFR gene. Our findings suggest the cytotoxic effect of pemetrexed may be associated with genetic polymorphisms and the expression level of genes involved in pemetrexed metabolisms in NSCLC cells.