• Title/Summary/Keyword: Foliated granite

Search Result 28, Processing Time 0.026 seconds

Sphene U-Pb ages of the granite-granodiorites from Hamyang, Geochang and Yeongju areas of the Yeongnam Massif (영남육괴 함양, 거창 및 영주 화강암-화강섬록암의 스핀 U-Pb 연대)

  • Park Kye-Hun;Lee Ho-Sun;Song Yong-Sun;Cheong Chang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.39-48
    • /
    • 2006
  • U-Pb ages were determined from the granitic rocks from central and northeastern parts of Yeongnam massif. Porphyritic granite of Seosang-myeon, Hamyang-gun near the boundary with Anui-myeon shows age of $225.4{\pm}4.1Ma$. Foliated granodiorites of Anui-myeon, Hamyang-gun and Sinwon-myeon, Geochang-gun are $195.6{\pm}1.8Ma$ and $194.2{\pm}2.4Ma$ old respectively. Granites from Hari-myeon and Buksang-myeon of Geochang-gun show almost identical ages of $198.4{\pm}2.5Ma$ and $194.6{\pm}2.6Ma$ respectively, while foliated granodiorite of Yeongju shows an age ot $171.3{\pm}2.3Ma$. Combining with previously reported results, Triassic granitoids were emplaced almost identically at ca. 225 Ma throughout the areas of Hamyang and Sangju oi Yeongnam massif and Baengnok, Jeomchon and Goesan of Okcheon metamorphic belt. There were significant gap of non-magmatism before the resume of granitic activities over the large areas of Hamyang-gun, Geochang-gun, Gimcheon-si and Seongju-gun from Triassic-Jurassic boundary to early Jurassic, 200-194 Ma. Igneous activity within the Yeongnam massif of this period has not been reported from the Okcheon belt or Gyeonggi massif and may reflect distinct tectonic environment. Around 170 Ma, when Yeongju granodiorite was emplaced, there were active granitic magamtism throughout the Yeongnam massif, Okcheon belt and also Gyeonggi massif.

Petrogenetic Study on the Foliated Granitoids in the Chonju and the Sunchang area (II) - In the Light of Sr and Nd Isotopic Properites - (전주 및 순창지역에 분포하는 엽리상 화강암류의 성인에 대한 연구 (II) - Sr 및 Nd 동위원소적 특성을 중심으로 -)

  • Na, Choon-Ki;Lee, In-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.249-262
    • /
    • 1997
  • The Sr and Nd isotopic compositions of two foliated granitic plutons located in the Chonju and Sunchang area were determined in order to reconfirm the intrusion ages of granitoids and to study the sources of granitic magmas. The best defined Rb-Sr isochron for the whole rock samples of the Chonju foliated granite (CFGR) give an age of $284{\pm}12Ma$, suggesting early Permian intrusion age. In contrast, the whole rock Rb-Sr data of the Sunchang foliated granite (SFGR) scatter widely on the isochron diagram with very little variation in the $^{87}Rb/^{86}Sr$ ratios and, therefore, yield no reliable age information. Futhermore they show the concordance of mineral and whole rock Rb-Sr isochron and divide into two linear groups with roughly the same slopes and significantly different $^{87}Sr/^{86}Sr$ ratios, indicating some kind of Rb-Sr distortion in whole rock scale and a difference in source material and/or magmatic evolution between two subsets. The reconstructed isochrons of 243 Ma, which was defined from the proposed data by the omission of one sample point with significantly higher $^{87}Rb/^{86}Sr$ ratio than the others, and 252 Ma, from the combined data of it and some of this study, strongly suggest the possibility that the SFGR was intruded appreciably earlier than had previously been proposed, although the reliability of these ages still questionable owing to high scatter of data points and, therefore, further study is necessary. All mineral isochrons for the investigated granites show the Jurassic to early Cretaceous thermal episode ranging from 160 Ma to 120 Ma Their corresponding initial $^{87}Sr/^{86}Sr$ ratios correlate well with their whole rock data, indicating that the mineral Rb-Sr system of the investigated granites was redistributed by the postmagmatic thermal event during Jurassic to early Cretaceous. The initial ${\varepsilon}Sr$ values for the CFGR (64.27 to 94.81) tend to be significantly lower than those for the SFGR (125.43 to 167.09). Thus it is likely that there is a marked difference in the magma source characteristics between the CFGR and the SFGR, although the possibility of an isotopic resetting event giving rise to a high apparent initial ${\varepsilon}Sr$ in the SFGR can not be ruled out. In contrast to ${\varepsilon}Sr$, both batholiths show a highly resticted and negative values of initial ${\varepsilon}Nd$, which is -14.73 to -19.53 with an average $-16.13{\pm}1.47$ in the CFGR and -14.78 to -18.59 with an average $-17.17{\pm}1.01$ in the SFGR. The highly negative initial ${\varepsilon}Nd$ values in the investigated granitoids strongly suggest that large amounts of recycled old continental components have taken part in their evolution. Furthermore, this highly resticted variation in ${\varepsilon}Nd$ is significant because it requires that the old crustal source material, from which the granitoid-producing melts were generated, should have a reasonably uniform Nd isotopic composition and also quit similar age. Calculated T2DM model ages give an average of $1.83{\pm}0.25Ga$ for CFGR and $1.96{\pm}0.19Ga$ for SFGR, suggesting the importance of a mid-Proterozoic episode for the genesis of two foliated granites. Although it is not possible to determine precisely the source rock compositions for the investigated foliatic granites, the Sr-Nd isotopic evidences indicate that midcrustal or less probably, a lower crustal granulitic source could be the most likely candidate.

  • PDF

K-Ar Ages and Major Mineral Compositions of the Mesozoic Igneous Rocks in the Vicinity of the Geochang Area (거창(居昌)지역에 분포하는 중생대 화성암류에 대한 연령과 주성분 광물의 화학조성)

  • Kim, Young Jun;Cho, Deung Lyong;Park, Young Surk
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.117-127
    • /
    • 1989
  • Devonian Geochang foliated granite and Jurassic plutonic rocks intrude Precambrian metamorphic Complex at Geochang area, southern part of the Korean Peninsular. Among them hornblendes from four Jurassic plutonic bodies which have had no trace of metamorphism or deformation since their intrusion were dated by K-Ar method. Hornblende gabbro dike which intruded Anorthosite of unknown age revealed $204{\pm}10Ma$, and hornblende granite and hornblende-biotite granodiorite were $178{\pm}9Ma$ and $181{\pm}9Ma$, repectively. Also, hornblende diorite which partly showing primary foliations were $178{\pm}9Ma$, so igneous activity of Geochang area, northern part of Jirisan, were active about 180 Ma before. Microprobe data of dated hornblends and other major constituent minerals such as plagioclases and biotites were also reported, and their chemical composition showed systematic changes in terms of lithologic types.

  • PDF

U-Pb Geochronology of the Triassic Foliated Granite Distributed in the Eastern Sancheong Area, SW Yeongnam Massif, Korea and its Implications (영남육괴 남서부 산청 동부지역에 분포하는 트라이아스기 변형 화강암의 U-Pb 연대측정과 그 함의)

  • Park, Kye-Hun;Song, Yong-Sun;Seo, Jaehyeon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.223-233
    • /
    • 2018
  • In this study, SHRIMP zircon U-Pb dating was performed on deformed granitic rocks in the Sancheong area in the northeastern part of the Jirisan area, southwest of Yeongnam Massif. Until now, these have been known as Precambrian or age-unknown old igneous rocks, but the U-Pb concordant ages obtained from two samples are $237.8{\pm}4.0Ma$ and $230.2{\pm}3.4Ma$, respectively, showing their emplacements in Early to Middle Triassic. These results indicate that the deformed granite was emplaced at about 238~230 Ma. The study area shows the characteristics of ductile deformation with prominent development of foliation, augen structure, and lineation. It is observed that the deformed granites occur as xenoliths within the syenite, indicating that the time of deformation is earlier than the intrusion of the syenite of about 220 Ma. The emplacement and deformation periods of the deformed granite is similar to that of Permo-Triassic granite gneisses distributed in the Gimcheon and Andong areas of the Yeongnam Massif. Taken together, the eastern part of the Yeongnam Massif, extending from the central part to the southwestern part, granite intrusions occurred at about 260-230 Ma, followed by metamorphism-deformation of about 230-220 Ma.

A Study on the Lineament Analysis Along Southwestern Boundary of Okcheon Zone Using the Remote Sensing and DEM Data (원격탐사자료와 수치표고모형을 이용한 옥천대 남서경계부의 선구조 분석 연구)

  • Kim, Won Kyun;Lee, Youn Soo;Won, Joong-Sun;Min, Kyung Duck;Lee, Younghoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.459-467
    • /
    • 1997
  • In order to examine the primary trends and characteristics of geological lineaments along the southwestern boundary of Okcheon zone, we carried out the analysis of geological lineament trends over six selected sub-areas using Landsat-5 TM images and digital elevation model. The trends of lineaments is determined by a minimum variance method, and the resulting geological lineament map can be obtained through generalized Hough transform. We have corrected look direction biases reduces the interpretability of remotely sensed image. An approach of histogram modification is also adopted to extract drainage pattern specifically in alluvial plains. The lineament extracting method adopted in this study is very effective to analyze geological lineaments, and that helps estimate geological trends associated various with the tectonic events. In six sub-areas, the general trends of lineaments are characterized NW, NNW, NS-NNE, and NE directions. NW trends in Cretaceous volcanic rocks and Jurassic granite areas may represent tension joints that developed by rejuvenated end of the Early Cretaceous left-lateral strike-slip motion along the Honam Shear Zone, while NE and NS-NNE trends correspond to fault directions which are parallel to the above Shear Zone. NE and NW trends in Granitic Gneiss are parallel to the direction of schitosity, and NS-NNE and NE trends are interpreted the lineation by compressive force which acted by right-lateral strike-slip fault from late Triassic to Jurassic. And in foliated Granite, NE and NNE trends are coincided with directions of ductile foliation and Honam Shear Zone, and NW-NNW trends may be interpreted direction of another compressional foliation (Triassic to Early Jurassic) or end of the Early Cretaceous tensional joints. We interpreted NS-NNE direction lineation is related with the rejuvenated Chugaryung Fault System.

  • PDF

Deformation structures of the Jurassic Ogcheon granite and the Honam Shearing, Ogcheon Area, Korea (옥천지역 쥬라기 옥천화강암의 변형구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2010
  • The Jurassic Daebo Ogcheon granite is distributed in the Ogcheon area which is located in the central part of the Ogcheon Belt, Korea. This paper newly examines the timing of Honam shearing on the basis of the petrofabric researches on the deformation structures of the Ogcheon granite. The structural shape of Ogcheon granite is mainly characterized by a wedge shaped of E-W trend and an elongate shape of ENE trend in geological map and by contacts parallel to the regional S1 foliation in the host Ogcheon supergroup. It indicates that the pluton was permittedly emplaced after the S1 formation. The main deformation structures are marked by a solid-state tectonic foliation of N-S trend, which passes through the contact of the pluton, and by an aplitic dyke of E-W trend, and by sinistral, NW and E-W oriented shear zones on the eastern border of the pluton. The petrofabric study on the main deformation structures suggests that the tectonic foliation and the aplitic dyke were formed by the Honam dextral strike-slip shearing of (N)NE trend at ca. $500{\sim}450^{\circ}C$ deformation temperature, and that the sinistral shear zones could be induced by the dextral rotation of the pluton from its original site of intrusion, that is, by the shear strain which is due to sliding of the pluton past the host rocks. The history of emplacement and deformation of the Ogcheon granite and the previous results on the timing of Honam shearing would be newly established and reviewed as follows. (1) Early~Middle Jurassic(187~170 Ma); intrusion of syntectonic foliated granite related to Early Honam shearing, (2) Middle Jurassic(175~166 Ma); main magmatic period of Jurassic granitoids, the permitted emplacement of the Ogcheon granite, (3) Middle~Late Jurassic(168~152 Ma); main cooling period of Jurassic granitoids, the deformation of the Ogcheon granite related to Late Honam shearing. Thus, this study proposes that the Honam shear movement would occur two times at least during 187~152 Ma (ca. 35 Ma) through the intertectonic phase of 175~166 Ma.

Mineral Compositions of Granitic Rocks in the Yeongkwang-Naju Area (영광-나주지역에 분포하는 화강암류의 광물성분에 대한 연구)

  • Park, Jae-Bong;Kim, Yong-Jun
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.535-549
    • /
    • 2012
  • Main aspect of this study are to clarify mineral compositions on granites in Youngkwang-Naju area. These granites are is divided into four rock facies based on the geologic ages, mineralogical composition and chemical constituents, and texture : hornblende-biotite granodiorite, biotite granite, porphyritic granite and two mica granite. These granites constitude an igneous complex formed by a series of differentiation from cogenetic magma. In compressive stress field between the Ogcheon folded belt and the Youngnam massif, the foliated and undeformed granites had formed owing to heterogeneous distribution of stress. The geochemical data of study area indicate magma of these rocks would had been generated by melting in lower and middle crust. The major minerals of granitic rocks in study area are plagioclase, biotite, muscovite and hornblende. Plagioclase range in composition from oligoclase ($An_{19.3-27.7}$) to andesine ($An_{28.4-31}$), and shows normal zoning patterns, This uniformed composition indicated slow crystallization, and it is obvious that the growth of these crystal occurred before final consolidation of the magma. The Mg content of biotite are increases with increasing of $f_{O2}$ and grade of differentiation, changing from phlogopite to siderophyllite. Its $Al^{iv}$/$Al^{total}$ ratios are propertional to bulk rock alumina content. Muscovite is primary in origin with high content of $TiO_2$, and Its composition correspond to celadonitic muscovite. Hornblende indicated calc amphibole group ($(Ca+Na)_{M4}{\geq}1.43$, $Na_{M4}<0.67$). and consolidation pressure of granitic body by geobarometer of Hammerstrume and Zen show 11.3~17.2 Km.

The temperature condition for the mylonitization of the Cheongsan granite, Korea (변형된 청산 화강암의 압쇄암화작용시의 변형온도 - 변형된 청산 화강암의 구조 해석 -)