• Title/Summary/Keyword: Foliar application of methanol

Search Result 3, Processing Time 0.021 seconds

Effect of Methylobacterium oryzae CBMB20 Inoculation and Methanol Spray on Growth of Red Pepper (Capsicum annuum L.) at Different Fertilizer levels (메탄올 살포와 Methylobacterium oryzae CBMB20 접종이 고추의 생육이 미치는 영향)

  • Chauhan, Puneet Singh;Lee, Gil-Seung;Lee, Min-Kyoung;Yim, Woo-Jong;Lee, Gyeong-Ja;Kim, Young-Sang;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.514-521
    • /
    • 2010
  • Fertilizers, plant growth promoting microbes and plant growth regulators should be combined together and used in order to achieve a maximal plant growth and yield in modern sustainable and ecological agricultural systems. In this study rhizosphere inoculation of Methylobacterium oryzae CBMB20 and foliar application of methanol were tested for their ability to promote the growth of red pepper plant at different levels of organic fertilizer. Rhizosphere inoculation of M. oryzae CBMB20 and foliar spray of methanol could promote red pepper plant growth and yield, and the growth promoting effect induced by the combined treatment of M. oryzae CBMB20 inoculation and foliar spray of methanol was more distinctive. This result suggests that a synergistic growth promoting effect of methanol spray and M. oryzae CBMB20 inoculation can be obtained in the combined treatment of the two growth promoting factors. The growth promoting effect was more significant in the lower fertilization rate, and the plant growth was not significantly different between 100 and 300% fertilizer treatments where both M. oryzae CBMB20 inoculation and foliar spray of methanol were included. This result indicates that, with the plant growth promoting effect of M. oryzae CBMB20 and methanol, fertilizer application rate can be profoundly reduced without any significant decreases in biomass accumulation and yield of crops.

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

Effect of Bentazon 6-hydroxylase Activity on Tolerance of Corn Cultivars to Bentazon (Bentazon 분해효소(分解酵素) 활성(活性)이 옥수수 품종간(品種間) Bentazon 내성(耐性)에 미치는 영향(影響))

  • Yun, Min-Soo;Pyon, Jong-Yeong
    • Korean Journal of Weed Science
    • /
    • v.15 no.3
    • /
    • pp.214-223
    • /
    • 1995
  • Tolerant corn cultivars to bentazon were selected and tolerance mechanism of corn cultivars to bentazon was studied by determining bentazon 6-hydroxylase(B6H) activity which was known to detoxify bentazon to 6-hydroxy bentazon at induced enzyme conditions with treatments of 1,8-naphthalic anhydride, ethanol and phenobarbital. Tolerant cultivars to bentazon were selected by growth response of corn by foliar application of bentazon to corn cultivars. Kwanganok, GA 209, IK 2, DB 544, and Suwon 19 were tolerant to bentazon, but KSS 3, KSS 4, KS 5, and Danok 2 were susceptible. Pretreating corn seeds with 1,8-naphthalic anhydride increased B6H activity at all cultivars, but the tendencies were more remarkable at Suwon 19 and GA 209, tolerant cultivars, than at Danok 2 and KS 5, susceptible cultivars. Treating corn shoots with ethanol increased B6H activity at Suwon 19 and GA 209. B6H activity was enhanced by treatments of ethanol at 1.0 or 2.5%, but decreased at ethanol 2.5 or 5.0% at Danok 2 and KS 5. Treating corn shoots with phenobarbital increased B6H activity at Suwon 19, GA 209, Danok 2, and KS 5 by treatments of phenobarbital at 2.0mM, but decreased at 4.0 or 8.0mM at all cultivars. Therefore, the tolerant mechanism of corn cultivars to bentazon may be explained partially by the activity of bentazon 6-hydroxylase which detoxifies bentazon to 6-hydroxy bentazon.

  • PDF