• Title/Summary/Keyword: Foliage shielding factor

Search Result 3, Processing Time 0.016 seconds

The effect of vegetation parameter characteristics of the multi-layer vegetation model on wind for numerical simulation of micro-meteorology (미기상 수치모의를 위한 다층식생모델의 식생 팍라메타가 바람에 미치는 영향)

  • 오은주;이화운;정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.605-613
    • /
    • 2003
  • In order to make use of the protection effect against wind by the vegetation, it examined whether it should make what vegetation form and arrangement using the 2-dimensional non-hydrostatic model. When the foliage shielding factor increases, it becomes hard to take in protection effect against wind in a residential section. When it makes height of vegetation high, it becomes hard to take in protection effect against wind with height. In the comparison in the case where vegetation high is gradually made low toward wind-stream from a vegetation, and the case of making it low gradually, although former tends to receive the protection effect against wind by the vegetation, attenuation of wind velicity becomes large. In the comparison in the case where foliage shielding factor and distribution of density of leaf are gathered gradually toward wind-stream from a vegetation. It has been understood to evaluate to height the influence that the vegetation multi-layer model by which the heat revenue and expenditure in the direction of the vegetation height is considered is used, and to characterize the vegetation group by the parameter setting.

Numerical modeling of Atmosphere - Surface interaction considering Vegetation Canopy (식물계를 고려한 지표-대기 상호작용의 수치모의)

  • 이화운;이순환
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.17-29
    • /
    • 1994
  • An one dimensional atmosphere-vegetation interaction model is developed to discuss of the effect of vegetation on heat flux in mesoscale planetary boundary layer. The canopy model was a coupled system of three balance equations of energy, moisture at ground surface and energy state of canopy with three independent variables of $T_f$(foliage temperature), $T_g$(ground temperature) and $q_g$(ground specific humidity). The model was verified by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HYPEX-MOBHLY experiment. As the result, both vegetation and soil characteristics can be emphasized as an important factor iii the analysis of heat flux in the boundary layer. From the numerical experiments, following heat flux characteristics are clearly founded simulation. The larger shielding factor(vegetation) increase of $T_f$ while decrease $T_g$. because vegetation cut solar radiation to ground. Vegetation, the increase of roughness and resistance, increase of sensible heat flux in foliage while decrease the latent heat flux in the foliage.

  • PDF

Estimation of the Heat Budget Parameter in the Atmospheric Boundary Layer considering the Characteristics of Soil Surface (지표면의 특성을 고려한 대기경계층내의 열수지 parameter 추정 -열수지 parameter를 이용한 중규모 순환의 수치예측-)

  • 이화운;정유근
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.727-738
    • /
    • 1996
  • An one dimensional atmosphere-canopy-soil interaction model is developed to estimate of the heat budget parameter in the atmospheric boundary layer. The canopy model is composed of the three balance equations of energy, temperature, moisture at ground surface and canopy layer with three independent variables of Tf(foliage temperature), Tg(ground temperature), and qg(ground specific humidity). The model was verilied by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HAPEX-MOBILHY experiment. Also we applied this model in two dimensional land-sea breeze circulation. According to the results of this study, surface characteristics considering canopy acted importantly upon the simulation of meso-scale circulation. The factors which used in the numerical experiment are as follows ; the change for a sort of soil(sand and peat), the change for shielding factor, and the change for a kind of vegetation.

  • PDF