• Title/Summary/Keyword: Fogg Behavior Model (FBM)

Search Result 1, Processing Time 0.017 seconds

An Empirical Analysis of the Active Use Paths induced by YouTube's Personalization Algorithm (유튜브의 개인화 알고리즘이 유도하는 적극이용 경로에 대한 실증분석)

  • Seung-Ju Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.31-45
    • /
    • 2023
  • This study deals with exploring qualitative steps and paths that appear as YouTube users' usage time increases quantitatively. For the study, I applied theories from psychology and neuroscience, subdivided the interval between the personalization algorithm of the recommendation system, and active use and analyzed the relationship between variables in this process. According to the theory behavioral model theory (FBM), variable reward, and dopamine addiction were applied. Personalization algorithms easy clicks as triggers according to associated content presentation functions in behavioral model theory (FBM). Variable rewards increase motivational effectiveness with unpredictability of the content you search, and dopamine nation is summarized as stimulating the dopaminergic nerve to continuously and actively consume content. This study is expected to make an academic and practical contribution in that it divides the purpose of use of content in the personalization algorithm and active use section into four stages from a psychological perspective: first use, reuse, continuous use, and active use, and analyzes the path.