• Title/Summary/Keyword: Focusing characteristics

Search Result 3,610, Processing Time 0.033 seconds

Investigating the Spatial Focusing Performance of Time Reversal Lamb Waves on a Plate through the Finite Element Method (유한요소법을 통한 판에서 시간반전 램파의 공간집속성능 규명)

  • Choi, Jeong-Hee;Lee, Hae-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1120-1131
    • /
    • 2011
  • Researches using time reversal acoustics(TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of a plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric(PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

Theoretical Study on the Generation of Directional Extreme Waves (다방향 극한파 생성의 이론적 연구)

  • Key-Yong Hong;Shuxue Liu;Seok-Won Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.38-48
    • /
    • 2002
  • Theoretical development to generate the directional extreme waves in model basin is established based on wave focusing method. The effects of associated parameters, such as the directional range, frequency width, and center frequency, are investigated in terms of wave focusing efficiency. The two different spectral models of constant wave amplitude and constant wave slope are applied to control the wave characteristics. The wave packets simulated by theory are compared with numerical results based on Boussinesq equation and FEM. Both controls of direction and frequency spectrum are essential to focus directional waves effectively. It is noticed that wave focusing ability depends on the frequency bandwidth of spectrum rather than center frequency, and both spectral models with same parameters result in the equivalent efficiency of wave focusing.

Design of Ultrasound Dynamic Focusing Systems (초음파 다이나믹 집속 시스템의 설계)

  • 김진하;김청월
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.65-71
    • /
    • 1984
  • The design formular of optical focusing systems cannot be applied to ultrasonic B scanners, which use broadband pulses instead of continuous wave. In this paper, a calculation method is studied for analyzing the propagation of ultrasonic broadband pulse excited by ultrasonic array transducers. Using the results, seveial design parameters such as the number of transducer elements, delay time, and the focal point are determined to obtain high resolution in the ultrasonic dynamic focusing system. A dynamic focusing system with low-noise switching characteristics; which attains lateral resolution of 2-3mm all along the axial direction up to 18 cm with a 3.5 MHz linear array transducer, was implemented.

  • PDF

Investigating the Spatial Focusing Performance of Time Reversal Lamb waves for Impact Localization on a Plate (판의 충격위치 추정을 위한 시간반전 램파의 공간모임성능 규명)

  • Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.418-429
    • /
    • 2011
  • Researches using time reversal acoustics (TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of the plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric (PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

  • PDF

Development of particle focusing device to monitor various low pressure processes (다양한 조건의 저압 공정 모니터링을 위한 입자 집속 장치 개발)

  • Kim, Myungjoon;Kim, Dongbin;Kang, Sang-Woo;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2017
  • As semiconductor process was highly integrated, particle contamination became a major issue. Because particle contamination is related with process yields directly, particles with a diameter larger than half pitch of gate should be controlled. PBMS (Particle beam mass spectrometry) is one of powerful nano particle measurement device. It can measure 5~500 nm particles at ~ 100 mtorr condition in real time by in-situ method. However its usage is restricted to research filed only, due to its big device volume and high price. Therefore aperture changeable aerodynamic lenses (ACALs) which can control particle focusing characteristics by changing its aperture diameter was proposed in this study. Unlike conventional aerodynamic lenses which changes particle focusing efficiency when operating condition is changed, ACALs can maintain particle focusing efficiency. Therefore, it can be used for a multi-monitoring system that connects one PBMS and several process chambers, which greatly improves the commercialization possibility of the PBMS. ACALs was designed based on Stokes number and evaluated by numerical method. Numerical analysis results showed aperture diameter changeable aerodynamic lenses can focus 5 to 100 nm standard particles at 0.1 to 10 torr upstream pressure.

Characteristics of a Miniaturized Ultrasonic Motor for Auto-focusing of a Mobile Phone

  • Lim Kee-Joe;Lee Jong-Sub;Kang Seong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.106-109
    • /
    • 2006
  • In this paper, the design and characteristics of a novel ultrasonic motor are investigated. Such a motor is appropriate far use in the optical zoom or auto focusing functions of the lens system in mobile phones. Its design and simulation of performances are carried out by FEM commercial software (ATILA). The shape of the motor is similar to a square without one side, on which an optical lens can be mounted. Two sheets of piezoelectric ceramics are adhered to both sides of two legs of the elastic body, respectively To drive the ultrasonic motor, the voltage is applied to two sheets of piezoelectric ceramics bonded to one leg. The rotation direction can be easily changed by switching the piezoelectric sheets bonded to the other leg, to which voltage is applied. A proto type of the motor is fabricated and its outer size is $10^*10^*2[mm3]$ including the camera lens of which the diameter is 7.5(mm). Its power consumption is about 0.3[W] and the speed of rotation is adjustable from 10 to 200[rpm] according to the applied voltage

Acoustic Field Analysis of Ultrasonic Focusing Transducer by Using Finite Element. Method and Hybrid Type Infinite Element Method (유한요소법과 하이브리드형 무한요소법을 이용한 초음파 집속변환자의 음장 해석)

  • Park, Soon-Jong;Yoon, Jong-Rak;Ha, Kang-Lyeol;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.36-43
    • /
    • 1995
  • This paper presents the lousing characteristics and the time. response of ultrasonic focusing transducer which is a coupled system with an electromechanical and an acoustical component. The Finite Element Method and the Hybrid Type Infinite Element Method are applied for the analysis. The position of the focal points and the resolutions is obtained from the loosing characteristics and the time response. It is found that the transducer with the damper, which stabilizes the displacement of the radiation surface, gives a better resolution. In conclusion, the results could be applied to the design and the performance analysis of the ultrasonic focusing transducer.

  • PDF

Optimal Design of Sheath Flow Nozzle Acceleration Section for Improving the Focusing Efficiency (집속효율 향상을 위한 외장유동노즐 가속 구간의 최적설계 연구)

  • Lee, Jin-Woo;Jin, Joung-Min;Kim, Youn-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.763-772
    • /
    • 2019
  • There is a need to use sheath flow nozzle to detect bioaerosol such as virus and bacteria due to their characteristics. In order to enhance the detection performance depending on nozzle parameters, numerical analysis was carried out using a commercial code, ANSYS CFX. Eulerian-lagrangian approach method is used in this simulation. Multiphase flow characteristics between primary fluid and solid were considered. The detection performance was evaluated based on the results of flow field in nozzle chamber such as focusing efficiency and swirl strength. In addition, Latin hypercube sampling(LHS) of design of experiment(DOE) was used for generating a near-random sampling. Then, the acceleration section is optimized using response surface method(RSM). Results show that the optimized model achieved a 6.13 % in a focusing efficiency and 11.47 % increase in swirl strength over the reference model.

Tight Focusing Characteristics of Circularly Polarized Bessel-Gauss Beams with Fractional-order Vortex Modulation

  • Lingyu Wang;Yu Miao;Mingzhu Xu;Xiumin Gao
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • Radially polarized beams with the ability to generate a sub-wavelength sized spot in a longitudinal field provides significant applications in microscopic imaging, optical tweezers, lithography and so on. However, this excellent property can also be achieved based on conventional circularly polarized beams. Here, we demonstrate its ability to create a strong longitudinal field by comparing the tight focusing characteristics of fractional-order vortex modulated radial polarized and left-handed circular polarized Bessel-Gauss beams. Additionally, the possibility of generating arbitrary fractional-order vortex modulated Bessel-Gauss beams with a strong longitudinal field is demonstrated. A special modulation method of left-handed circularly polarized Bessel-Gauss beams modulated by a fractional-order vortex is adopted creatively and a series of regulation laws are obtained. Specifically, the fractional-order phase modulation parameter n can accurately control the number of optical lobes. The ratio of the pupil radius to the incident beam waist β1 can control the radius of the optical lobes. The first-order Bessel function amplitude modulation parameter β2 can control the number of layers of optical lobes. This work not only adds a new modulation method for optical micromanipulation and optical communication, but also enriches the research on fractional vortex beams which has very important academic significance.