• Title/Summary/Keyword: Focused ion beam

Search Result 278, Processing Time 0.025 seconds

Analysis of Residual Stresses at Manufacturing Precesses for Microaccelerometer Sensors (미소가속도계 센서의 제조공정에서 잔류응력 해석)

  • 김옥삼
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.631-635
    • /
    • 2001
  • The major problems associated with the manufacturing processes of the microaccelerometer based on the tunneling current concept is the residual stress. This paper deals with finite element analysis of residual stress causing pop up phenomenon which are induced in micromachining processes for a microaccelerometers sensor using silicon on insulator(SOI) wafer. After heating the tunnel gap up to $100^{\circ}C$and get it through cooling process and the additional beam up to $80^{\circ}C$get it through the cooling process. We learn the residual stress of each shape and compare the results with each other, after heating the tunnel gap up to $400^{\circ}Cduring$ the Pt deposition process. The equivalent stresses produced during the heating process of focused ion beam(FIB) cut was also to be about $0.02~0.25Pa/^{\circ}C$and cooling process the gradient of residual stresses of about $8.4\{times}10^2Pa/{\mu}m$ still at cantilever beam and connected part of paddle. We want to seek after the real cause of this pop up phenomenon and diminish this by change manufacturing processes of microaccelerometer sensors.

  • PDF

Measurement of Sputtering Yield of $RF-O_2$ Plasma treated MgO Thin Films ($RF-O_2$ Plasma 처리한 MgO 박막의 스퍼터링 수율 측정)

  • Jeong, W.H.;Jeong, K.W.;Lim, Y.C.;Oh, H.J.;Park, C.W.;Choi, E.H.;Seo, Y.H.;Kim, Y.K.;Kang, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.259-265
    • /
    • 2006
  • We measured sputtering yield of RF $O_2-plasma$ treated MgO protective layer for AC-PDP(plasma display panel) using a Focused ion Beam System(FIB). A 10 kV acceleration voltage was applied. The sputtering yield of the untreated sample and the treated sample were 0.33 atoms/ion and 0.20 atoms/ion, respectively. The influence of the plasma-treatment of MgO thin film was characterized by XPS and AFM analysis. We observed that the binding energy of the O 1s spectra, the FWHM of O 1s spectra and the RMS(root-mean-square) of surface roughness decreased to 2.36 eV, 0.6167 eV and 0.32 nm, respectively.

Chlorine effect on ion migration for PCBs under temperature-humidity bias test (고온고습 전원인가 시험에서 Cl에 의한 이온 마이그레이션 불량)

  • Huh, Seok-Hwan;Shin, An-Seob
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • By the trends of electronic package to be more integrative, the fine Cu trace pitch of organic PCB is required to be a robust design. In this study, the short circuit failure mechanism of PCB with a Cl element under the Temperature humidity bias test ($85^{\circ}C$/85%RH/3.5V) was examined by micro-structural study. A focused ion beam (FIB) and an electron probe micro analysis (EPMA) were used to polish the cross sections to reveal details of the microstructure of the failure mode. It is found that $CuCl_x$ were formed and grown on Cu trace during the $170^{\circ}C$/3hrs and that $CuCl_x$ was decomposed into Cu dendrite and $Cl_2$ gas during the $85^{\circ}C$/85%RH/3.5V. It is suggested that Cu dendrites formed on Cu trace lead to a short circuit failure between a pair of Cu traces.

Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn (Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

A Study on the Method of Transferring Metal Specimens for Real-time Transmission Electron Microscopy using Ultrasonic Treatment (초음파 처리 활용 실시간 투과전자현미경 관찰용 금속 시편 전사 방법에 관한 연구)

  • H. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2024
  • Micro-electromechanical systems (MEMS) based in-situ heating holders have been developed to enable high resolution imaging of heat treatment analysis. However, unlike the standard 3 mm metal disk specimens used in the furnace-based heating holder and general transmission electron microscopy holder, the MEMS-based in-situ heating holder requires thin specimens that can be penetrated by electrons to be transferred onto the MEMS chip. Previously, focused ion beam milling was used to transfer metal specimens, but it has the disadvantage of being expensive and the risk of specimen damage due to gallium ions. Therefore, in this study, we devised a method of transferring metallic materials by ultrasonic treatment using a transmission electron microscopy specimen made by electro jet polishing. A 3mm electropolished metal disk was placed in an appropriate solution, ultrasonicated, and then drop casted. The transfer of the specimen was successful, but it was confirmed that dislocations were formed inside the specimen due to ultrasonic treatment. This study provides a novel method for transferring metallic materials onto MEMS chips, which is cost-effective and less gallium ion damaging to the specimen. The results of this study can be used to improve the efficiency of heat treatment analysis using MEMS-based in-situ heating holders.

Micropatterning by Low-Energy Focused ton Beam Lithography(FIBL) (저에너지 집속이온빔리소그라피(FIBL)에 의한 미세패턴 형성)

  • 이현용;김민수;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.224-227
    • /
    • 1995
  • The micro-patterning by a Bow energy FIB whish has been conventionally utilized far mask-repairing was investigated. Amorphous Se$\_$75/Gee$\_$25/ resist irradiated by 9[keV]-defocused Ga$\^$+/ ion beam(∼10$\^$15/[ions/$\textrm{cm}^2$]) resulted in increasing the optical absorption, which was also observed also in the film exposed by an optical dose of 4.5${\times}$10$\^$20/[photons/$\textrm{cm}^2$]. The ∼0.3[eV] edge shift for ion-irradiated film was about twice to that obtained for photo-exposed. These large shift could be estimated as due to an increase in disorder from the decrease in the sloop of the Urbach tail. For Ga$\^$+/ FIB irradiation with a relatively low energy, 30[keV] and above the amount of dose of 1.4${\times}$10$\^$16/[ions/$\textrm{cm}^2$], the irradiated region in a-Se$\_$75/Ge$\_$25/ resist was perfectly etched in acid solution for 10[sec], which is relatively a short development time. A contrast was about 2.5. In spite of the relatively low incident energy,∼0.225[$\mu\textrm{m}$] pattern was clearly obtained by the irradiation of a dose 6.5${\times}$10$\^$16/[ions/$\textrm{cm}^2$] and a scan diameter 0.2[$\mu\textrm{m}$], from which excellent results were expected fur incident energies above 50[keV] which was conventionally used in FIBL.

  • PDF

Characteristics of Polarization and Birefringence for Submicron a-Ge Thin Film on Quartz Substrate Formed by Focused-Ion-Beam (석영 기판 위에 집속 이온빔 기술에 의해 형성된 비정질 게르마늄 박막 미세 패턴의 편광 및 복굴절 특성)

  • Shin, Kyung;Ki, Jin-Woo;Park, Chung-Il;Lee, Hyun-Yong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.617-620
    • /
    • 1999
  • In this study, the polarization e(fecal and the birefringence effect of amorphous germanium (a-Ge) thin films were investigated by using linearly polarized He-Ne laser beam. The a-7e thin films were deposited on the quarts substrate by plasma enhanced chemical vapor deposition (PECVD) and thermal vacuum evaporation In order to obtain the optimum grating arrays, inorganci resists such as Si$_3$N$_4$ and a-Se$_{75}$ Ge$_{25}$ , were prepared with the optimized thickness by Monte Carlo (MC) simulation. As the results of MC simulation, the thickness ofa-Se$_{75}$ Ge$_{25}$ resist was determined with Z$_{min}$ of 360$\AA$ . The resists were exposed to Ga$^{+}$-FIB with accelerating energies of 50 keV, developed by wet etching, and a-Ge thin film was etched by reactive ion-etching (RIE). Finally, we were obtained grating arrays which grating width and linewidth are 0.8${\mu}{\textrm}{m}$, respectively and we studied the polarization and birefringence effect in transmission grating array made of high refractive amorphous material, and the applicability as waveplates and polarizers in optical device.e.e.

  • PDF

Oscillatory Josephson-Vortex Resistance in Stacks of $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$ Intrinsic Josephson Junctions

  • Choi Jae-Hyun;Bae Myung-Ho;Lee Hu-Jong;Kim Sang-Jae
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • We report the oscillation of the Josephson vortex-flow resistance in the rectangular stacks of $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$(Bi-2212) intrinsic Josephson junctions (IJJs). Apiece of Bi-2212 single crystal containing a few tens of IJJs was sandwiched between two gold electrodes and fabricated into a rectangular shape with the typical lateral size of about $1.5{\times}10\;{\mu}m^2$, using e-beam lithography and focused ion-beam etching techniques. In a tesla-range magnetic field applied in parallel with the junction planes, the oscillation of the Josephson vortex flow resistance was observed at temperatures near 60 K. The oscillation results from the interplay between the triangular Josephson vortex lattice and the potential barrier at the boundary of a single crystal. The oscillatory magnetoresistance for different bias currents, external magnetic fields, and the tilt-angles provides useful information on the dynamics of the coupled Josephson-vortex lattice system.

  • PDF

Bidirectional Current Triggering in Two-Terminal Planar Device Based on Highly Resistive Vanadium Dioxide Thin Film Using 966nm Near Infrared Laser (966nm 근적외선 레이저를 이용한 고저항성 바나듐 이산화물 박막 기반 2단자 평면형 소자에서의 양방향 전류 트리거링)

  • Kim, Jihoon;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.28-34
    • /
    • 2015
  • By incorporating a 966nm near infrared laser, we demonstrated bidirectional current triggering of between 0 and 10mA in a two-terminal planar device based on a highly resistive vanadium dioxide ($VO_2$) thin film grown by a pulsed laser deposition method. A two-terminal planar device, which had an electrode separation of $100{\mu}m$ and a $50{\mu}m-wide$ $VO_2$ conducting layer, was fabricated through ion beam-assisted milling and photolithographic techniques. A bias voltage range for stable bidirectional current triggering was determined by investigating the current-voltage curves of the $VO_2-based$ device in a current-controlled mode. Bidirectional current triggering of up to 10mA was realized by directly illuminating the $VO_2$ film with a focused infrared laser beam, and the transient responses of triggered currents were analyzed when the laser was modulated at various pulse widths and repetition rates. A switching contrast between off- and on-state currents was evaluated as ~3571, and the rising and falling times were measured as ~40 and ~20ms, respectively.

Numerical Study of a Novel Bi-focal Metallic Fresnel Zone Plate Having Shallow Depth-of-field Characteristics

  • Kim, Jinseob;Kim, Juhwan;Na, Jeongkyun;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.147-152
    • /
    • 2018
  • We propose a novel bi-focal metallic Fresnel zone plate (MFZP) with shallow depth-of-field (DOF) characteristics. We design the specific annular slit patterns, exploiting the phase-selection-rule method along with the particle swarm optimization algorithm, which we have recently proposed. We numerically investigate the novel characteristics of the bi-focal MFZP in comparison with those of another bi-focal MFZP having equivalent functionality but designed by the conventional multi-zone method. We verify that whilst both bi-focal MFZPs can produce dual focal spots at $15{\mu}m$ and $25{\mu}m$ away from the MFZP plane, the former exhibits characteristics superior to those of the latter from the viewpoint of axial resolution, including the axial side lobe suppression and axial DOF shallowness. We expect the proposed bi-focal MFZP can readily be fabricated with electron-beam evaporation and focused-ion-beam processes and further be exploited for various applications, such as laser micro-machining, optical trapping, biochemical sensing, confocal sensing, etc.