• Title/Summary/Keyword: Foating structure

Search Result 2, Processing Time 0.018 seconds

An analytic model for planar devices with multiple floating rings (다수의 전계제한링을 갖는 planar소자의 해석적 모델)

  • 배동건;정상구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.136-143
    • /
    • 1996
  • A simple analytic model for the planar junctions with multiple foating field limiting rings(FLR) is presented which yields analytic expressions for the breakdown voltage and optimum ring spacings. the normalized potential of each ring is derived as a function of the normalized depletion width and the ring spacing. Based on the assumption that the breakdwon occurs simulataneously at cylindrical junctions of FLR structure where the peak sruface electric fields are equal, the optimum ring spacings are determined. The resutls are in good agreement with the simulations obtained from two dimensional device simulation program MEDICI and with the experimental data reported. The normalized experessions allow a calculation of breakdown voltage and optimum spacing over a broad range of junction depth and background doping levels.

  • PDF

Displacement Measurement of a Floating Structure Model Using a Video Data (동영상을 이용한 부유구조물 모형의 변위 관측)

  • Han, Dong Yeob;Kim, Hyun Woo;Kim, Jae Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.159-164
    • /
    • 2013
  • It is well known that a single moving camera video is capable of extracting the 3-dimensional position of an object. With this in mind, current research performed image-based monitoring to establish a floating structure model using a camcorder system. Following this, the present study extracted frame images from digital camcorder video clips and matched the interest points to obtain relative 3D coordinates for both regular and irregular wave conditions. Then, the researchers evaluated the transformation accuracy of the modified SURF-based matching and image-based displacement estimation of the floating structure model in regular wave condition. For the regular wave condition, the wave generator's setting value was 3.0 sec and the cycle of the image-based displacement result was 2.993 sec. Taking into account mechanical error, these values can be considered as very similar. In terms of visual inspection, the researchers observed the shape of a regular wave in the 3-dimensional and 1-dimensional figures through the projection on X Y Z axis. In conclusion, it was possible to calculate the displacement of a floating structure module in near real-time using an average digital camcorder with 30fps video.