• Title/Summary/Keyword: Foaming Magnitude

Search Result 4, Processing Time 0.017 seconds

Axiomatic Design of Mold System for Advance of Foaming Magnitude (발포 배율의 향상을 위한 금형 시스템의 공리적 설계)

  • Hwang, Yun-Dong;Cha, Seong-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.637-644
    • /
    • 2001
  • Polymer materials have a lot of merits including the low cost and the easiness of forming. For these reasons they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980s to save a quantity of material and increase mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. They can be solved by using Axiomatic Design Method which is very useful design method for designing a new product. Its main character is scientific and analytical. The information about the thickness of cavity plays an important role in making an effective foam. The goal of this research is to design mold system for advance of foaming magnitude with axiomatic design method. There is a relation between the change of cavitys thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. In this paper, an advanced mold system was presented by mapping the relation between functional requirements and design parameters.

Impact Strength as Foaming Magnitude of Microcellular Foamed Plastics (초미세 발포 플라스틱의 공극률에 따른 충격 강도)

  • 황윤동;차성운;김철진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.341-345
    • /
    • 2001
  • New technoloty called microcellular foaming process was developed at MIT in 1980's. Although it has many good things, it could not be used it all sides of manufacturing plastics. Because it takes a long time for making foamed goods. So microcellular foaming injection molding process appeared to solve this problem. The first purpose of this research is to measure the impact strength as foaming magnitude of microcellular foamed plastics. There are two methods such as batch process and microcellular foaming injection molding process in making foamed plastics. According to the experimental data, the impact strength of each specimen was measured to find out the influence of foaming magnitude of microcellular foamed plastics.

  • PDF

A Change of Foaming Magnitude as Thickness of Mold System (금형 시스템의 살두께에 대한 발포 배율의 변화)

  • Hwang, Yun-Dong;Cha, Seong-Un;Yun, Jae-Dong;Kim, Ji-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.186-191
    • /
    • 2000
  • We use so many plastic products in everyday. Because polymer materials have a lot of merits including low cost and easiness of forming, they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980's to save a quantity of material and increase mechanical properties. The information about the thickness of cavity plays an important role in appling microcellular foaming process to the conventional injection molding process. It is essential to make an effective foam. The goal of this research is to measure the relation between the change of cavity's thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of cavity is mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. The proposed foaming magnitude changes data of polymer in relation to mold system can be applied in more extensive injection molding process, such as optimum design of mold for microcellular foaming process.

  • PDF

Cooling performance test of the superconducting fault current limiter

  • Yeom, H.;Hong, Y.J.;In, S.;Ko, J.;Kim, H.B.;Park, S.J.;Kim, H.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.66-70
    • /
    • 2014
  • The superconducting fault current limiter (SFCL) is an electrical power system device that detects the fault current automatically and limits the magnitude of the current below a certain safety level. The SFCL module does not have any electrical resistance below the critical temperature, which facilitates lossless power transmission in the electric power system. Once given the fault current, however, the superconducting conductor exhibits extremely high electrical resistance, and the magnitude of the current is accordingly limited to a low value. Therefore, SFCL should be maintained at a temperature below the critical temperature, which justifies the cryogenic cooling system as a mandatory component. This report is a study which reported on the cooling system for the 154 kV-class hybrid SFCL owned by Korea Electric Power Corporation (KEPCO). Using the cryocooler, the temperature of liquid nitrogen (LN2) was lowered to 71 K. The cryostat was pressurized to 5 bars to improve the dielectric strength of nitrogen and suppress nitrogen bubble foaming during operation of SFCL. The SFCL module was immersed in the liquid nitrogen of the cryostat to maintain the superconducting state. The performance test results of the key components such as cryocooler, LN2 circulation pump, cold box, and pressure builder are shown in this paper.