• Title/Summary/Keyword: Foaming

Search Result 634, Processing Time 0.029 seconds

Preparation of Porous Inorganic Materials by Foaming Slurry (슬러리 발포에 의한 연속성 무기질 다공체의 제조)

  • 박재구;이정식
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1280-1285
    • /
    • 1998
  • Foaming method is presented the preparation of porous materials from high-concentrated kaolin silica and flyash slurries. The slurries were foamed dried and sintered respectively. The porosity of sintered ma-terials was about 70-75% Mean pore-size was the range of 70-150$\mu\textrm{m}$ and pore structure was continuous Sodium lauryl sulfate anionic surfactant was used as a foaming agent. The foaming ability and the froth sta-bility were increased with increasing the concentration of the foaming agent. But the size of the constituent bubble of froth after foaming process was not affected by the concentration of the foaming agent. These results showed that the mean pore-size of sintered materials was closely related to the froth stability which is related to the change of bubble-size during the drying process.

  • PDF

The Effect of Pressing Type and Foaming Agent on the Microstructural Characteristic of Al Foam Produced by Powder Compact Processing (가압형태와 발포제가 분말성형 발포법에 의해 제조된 알루미늄 발포체의 미세구조에 미치는 영향)

  • Choi, Ji Woong;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.60-65
    • /
    • 2021
  • In this study, the effect of pressure type and foaming agent on the microstructural change of Al foam produced by powder compact processing was investigated. Better foaming characteristic is easily obtained from extrusion process with strong plastic deformation and preheating than that by uniaxial pressing with preheating. In current powder compact foaming process using TiH2/MgH2 mixture as a foaming agent, a temperature of 670℃ and addition of 30% MgH2 in TiH2 foaming agent was chosen as the most suitable foaming condition. The aluminum (Al) foams with maximum porosity of around 70%, relatively regular pore size and distribution were successfully produced by means of the powder metallurgy method and extrusion process.

The Study for Cell Morphology with Gas Cocktail in Microcellular Foaming Process (초미세 발포 공법 시 가스 혼합에 따른 셀 형상 연구)

  • Cha Sung Woon;Yoon Jae Dong;Lee Yoon Sung;Kim Hak Bin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.168-174
    • /
    • 2005
  • Nowadays, the companies use polymer materials for many purposes fur they have many advantages. The costs of these materials take up too high a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2,\;N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. In previous research, many facts of microcellular foaming process are founded its characteristics. But previous researcher found the characteristics of microcellular foaming process with pure gas, for example $CO_2,\;N_2$ and so on, they did not found the characteristics of microcellular foaming process with one more gases. If one more gases inlet the resin, the characteristics of microcellular foaming process is changed very amazingly. In this paper, discuss on the characteristics of microcellular foaming process wi th gas cocktail about cell morphology.

Axiomatic Design of Mold System for Advance of Foaming Magnitude (발포 배율의 향상을 위한 금형 시스템의 공리적 설계)

  • Hwang, Yun-Dong;Cha, Seong-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.637-644
    • /
    • 2001
  • Polymer materials have a lot of merits including the low cost and the easiness of forming. For these reasons they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980s to save a quantity of material and increase mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. They can be solved by using Axiomatic Design Method which is very useful design method for designing a new product. Its main character is scientific and analytical. The information about the thickness of cavity plays an important role in making an effective foam. The goal of this research is to design mold system for advance of foaming magnitude with axiomatic design method. There is a relation between the change of cavitys thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. In this paper, an advanced mold system was presented by mapping the relation between functional requirements and design parameters.

A Change of Foaming Magnitude as Thickness of Mold System (금형 시스템의 살두께에 대한 발포 배율의 변화)

  • Hwang, Yun-Dong;Cha, Seong-Un;Yun, Jae-Dong;Kim, Ji-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.186-191
    • /
    • 2000
  • We use so many plastic products in everyday. Because polymer materials have a lot of merits including low cost and easiness of forming, they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980's to save a quantity of material and increase mechanical properties. The information about the thickness of cavity plays an important role in appling microcellular foaming process to the conventional injection molding process. It is essential to make an effective foam. The goal of this research is to measure the relation between the change of cavity's thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of cavity is mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. The proposed foaming magnitude changes data of polymer in relation to mold system can be applied in more extensive injection molding process, such as optimum design of mold for microcellular foaming process.

  • PDF

A Study on Acoustical Characteristics in Microcellular Foaming Plastics (초미세 발포 플라스틱의 음향특성 연구)

  • Cha, Sung-Woon;Kim, Hak-Bin;Lee, Byoung-Hee;Kang, Yon-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.71-77
    • /
    • 2008
  • Microcellular foaming plastics create a sensation at polymer industrial for lowering product costs and overcoming a lowering of mechanical intensity. Among many advantages, microcellular foaming plastics is well known to have a good acoustical properties. This research based on the experiment of sound absorption and transmission characteristics inquire into acoustical properties of microcellular foaming plastics. Difference of transmission loss of microcellular foaming plastics and solid materials was defined as cell effect. Also, cell effect is expressed by sound reflection and sound absorption. This study is expected to fundamental research to present economical, functional alternative plan for products using sound absorption and transmission materials.

Impact Strength as Foaming Magnitude of Microcellular Foamed Plastics (초미세 발포 플라스틱의 공극률에 따른 충격 강도)

  • 황윤동;차성운;김철진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.341-345
    • /
    • 2001
  • New technoloty called microcellular foaming process was developed at MIT in 1980's. Although it has many good things, it could not be used it all sides of manufacturing plastics. Because it takes a long time for making foamed goods. So microcellular foaming injection molding process appeared to solve this problem. The first purpose of this research is to measure the impact strength as foaming magnitude of microcellular foamed plastics. There are two methods such as batch process and microcellular foaming injection molding process in making foamed plastics. According to the experimental data, the impact strength of each specimen was measured to find out the influence of foaming magnitude of microcellular foamed plastics.

  • PDF

Effects of Blowing and Nucleating Agents on the Foaming Properties of Nylon 6

  • Jung-soo Kim;Sung Yeol Kim
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.65-69
    • /
    • 2023
  • To reduce the weight of the engineering plastic Nylon 6 resin, two high-temperature foaming agents, p-toluenesulfonyl semicarbazide (PTSS) and 5-phenyltetrazole (5-PT) (0-10 phr), were added and foamed without other additives. We investigated the effects of the foaming agent type and content on the foam density (g/cm3) and percent weight reduction rate of the Nylon 6 foam, and 5-PT exhibited better foaming performance than PTSS. In the case of 5-PT, the weight reduction rate was above 36% when the blowing agent content was 1.5 phr or higher, indicating that 5-PT is an effective blowing agent for reducing the Nylon 6 foam weight. Additionally, we studied the effect of the nucleating agent Talc content (0-0.4 phr) on Nylon 6 foaming, and the nucleating agent Talc considerably reduced foaming.