• Title/Summary/Keyword: Foaming

Search Result 640, Processing Time 0.025 seconds

Analysis of the Quality Characteristics and Functionality of Yuzu (Citrus junos Sieb.) Powder and Foam Tablets Containing the Same according to the Drying Method (건조방법에 따른 유자 분말 및 이를 함유한 발포정의 품질특성 및 기능성 분석)

  • Bo-Bae Lee;Hyeon-Ju Jeong;Chang-Yong Yoon;Seung-Hee Nam
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.3
    • /
    • pp.129-138
    • /
    • 2024
  • In this study, in order to develop an foaming tablet product using yuzu powder, yuzu powder was manufactured using different drying methods such as freeze-drying, 60℃ drying, and 40℃ drying, and then quality characteristics and functionality were analyzed. The naringin content per g of yuzu powder was 8.9 mg for freeze-drying and 8.8 mg for 60℃ drying, and the hesperidin content per g of yuzu powder was highest at 53.6 mg for freeze-drying and 46.2 mg for 60℃ drying. followed by 40℃drying (41.7 mg). The tyrosinase inhibitory activity of 60℃ dried powder was found to be twice as high as that of freeze dried powder. Accordingly, in order to develop an inner beauty product, foaming tablets were manufactured using hot air dried powder, and the quality characteristics and functional ingredients of the final foaming tablets were investigated. The foaming tablet prepared with yuzu powder content of 10 and 15% showed an inhibitory activity of tyrosinase of 73.7 %, which was 1.6 times higher than that of ascorbic acid (1 mM), which was a positive control, confirming its melanin production inhibition effect.

A Study of Characteristics Variation of Thermally Expandable Microspheres in Post-polymerization Treatment by Various Initiators

  • You, Hae Na;Kim, Ji Hoo;Kim, Myeong Woo;Kim, Keon Il;Park, Hyun Duk
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.211-215
    • /
    • 2017
  • Thermally expandable microspheres were used as post-treatment initiators of potassium persulfate, sodium bisulfite, and sodium sulfide in order to improve the foaming ability and whiteness when foaming a mixture of thermally expandable microsphers and poly(vinyl chloride). Potassium persulfate showed no significant influence on the foaming behavior, foam expansion, whiteness, and yellowing, whereas in the case of using sodium bisulfite. In particular, sodium bisulfite demonstrated the best efficiency with 2 wt% treatment. The thermally expandable microspheres prepared herein can provide excellent foamability and whiteness, and are expected to be applicable in various fields such as general coating and wallpaper.

Analysis of the Foam Generated Using Surfactant Sodium Lauryl Sulfate

  • Ranjani, G. Indu Siva;Ramamurthy, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • The performance evaluation of a sodium lauryl sulfate to qualify as a foaming agent is presented in this paper. When new surfactants are used a systematic study of production parameters on the foam characteristics needs to be undertaken unlike proprietary foaming agents and foam generator for which manufacturer has predefined the parameters. The relative influence of the foam parameters and optimization of factors were carried out through a systematic experiment design. The foam production parameters namely foam generation pressure and dilution ratio of foaming agents are observed to have significant effect on all foam characteristics with the exception of foam output rate on which only foam generation pressure has influence. The foam with good initial foam density need not necessarily be stable foam. The optimum levels of foam production parameters are determined for the surfactant Sodium lauryl sulfate which can be used to produce stable foam for foam concrete production.

Design of Gas Supply System for Microcellular Foamed Injection Molding Using Axiomatic Approach (공리적 접근을 사용한 초미세 발포 사출기용 가스공급장치의 설계)

  • Lee, J.W.;Cha, S.W.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.414-419
    • /
    • 2001
  • Microcellular foamed plastic is a foaming technology that is safer to the environment and has no significant deterioration of mechanical properties compared to the conventional foamed plastic. Currently, the development of the injection-molding machine for microcellular plastic (MCP) is nearing completion. Currently, researches on the mass production system for the MCP injection-molding machine are under progress. The purpose of this paper is to design the gas supply system suitable for microcellular foaming in the injection-molding machine. For the design process, Axiomatic Approach, a powerful tool for design, will be used.

  • PDF

A Study on Optimization of Board Molding Process with GMPU Technology (GMPU 공법을 이용한 보드 성형 공정 최적화 연구)

  • Choi, Dong-Jo;Park, Hong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • Lightweight board has been used for manufacturing various fields of automotive interior trims for years. The GMPU board was constructed with glass fiber mat, honeycomb and polyurethane foamed using polyol and isocyanate materials which were sprayed by robot that is interlocked foaming machine. For more lightweight and cost reduction this paper shows how to optimize GMPU process parameters that related to foaming condition, robot position and robot velocity for polyurethane weight. The results show that flexural strength and modulus of board's specimens were evaluated by robot velocity and moving pattern. Based on that, a innovative process was developed for more lightweight and cost reduction.

Mechanical Properties of Aluminium Alloy with Cellular Structure. (미세기공 알루미늄 소재의 기계적 성질)

  • 윤성원;이승후;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.695-698
    • /
    • 2002
  • Induction heating process is one of the most efficient heating process in terms of temperature control accuracy and heating time saving. In the past study, fabrication process of cellular 6061 alloys by powder metallurgical route and induction heating process was studied. To supplement the framing conditions that studied in past study, effect of induction heating capacity and holding time at foaming temperature were investigated. Under the achieved framing conditions, teamed 6061 alloys were fabricated for variation of foaming temperature, and porosities(%)-foaming temperature curves were obtained by try-error experimental method. Uniaxial compression tests were performed to investigate the relationship between porosities(%) and stress-strain curves of framed 6061 alloy. Also, energy absorption capacity and efficiency were calculated from stress-strain curves to investigated. Moreover, dependence of plateau stress on strain rate was investigated in case of cellular 6061 alloy with low porosities(%)

  • PDF

Processing Methods for the Preparation of Porous Ceramics

  • Ahmad, Rizwan;Ha, Jang-Hoon;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.389-398
    • /
    • 2014
  • Macroporous ceramics with tailored pore size and shape could be used for well-established and emerging applications, such as molten metal filtration, biomaterial, catalysis, thermal insulation, hot gas filtration and diesel particulate filters. In these applications, unique properties of porous materials were required which could be achieved through the incorporation of macro-pores into ceramics. In this article, we reviewed the main processing techniques which can be used for the fabrication of macroporous ceramics with tailored microstructure. Partial sintering, replica templates, sacrificial fugutives, and direct foaming techniques was described here and compared in terms of microstructures and mechanical properties that could be achieved. The main focus was given to the direct foaming technique which was simple and versatile approach that allowed the fabrication of macro-porous ceramics with tailored features and properties.

A Change of Strength at Microcellular Foamed Plastics as Content of Glass Fiber (GLASS FIBER의 함유량에 따른 초미세 발포 플라스틱의 강도 변화)

  • 김보흥;차성운;황윤동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.335-340
    • /
    • 2001
  • We use so many plastic products in everyday. Because polymer materials have a lot of merits including low cost and easiness of forming, they are widely used in many manufacturing industries. Microcellular foaming process was developed at MIT in 1980's to save a quantity of materials and increase mechanical properties. The improvement of strength is very important factor in relation with the reduction of mass. So the first purpose of this research is to improve the strength of the microcellular foamed plastics as variation of glass-fiber's volume friction. Also the characteristic of filler such as glass-fiber was presented in a microcellular foaming process.

  • PDF

MCPs Product and Process Design of Mixed Materials Using Axiomatic Design (공리적 설계를 이용한 발포제 혼합재료의 MCPs 제품 및 공정 설계)

  • 이경수;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1414-1417
    • /
    • 2003
  • In chemical forming process, mixed materials of LDPE, EVA and forming agent are used. However mechanical properties has been dropping remarkably through this forming process. In this study, Above materials(LDPE, EVA) were used in microcellular foaming injection process. And various effective factors in this process were selected by Axiomatic approach and systematically estimated by DOE(Design of Experiments). As a results, injection type and rate of mixing resins have more influence on forming rate than other factors.

  • PDF

Effect of the $CO_2$ on Viscosity Change in Continuous Microcellular Foaming Processing (초미세 발포 연속공정을 위한 $CO_2$ 사용이 재료의 점도변화에 미치는 영향)

  • 문용락;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1394-1397
    • /
    • 2003
  • The first thing in developing injection molding and extrusion with microcellular foaming process is to get a grip on one phase state's rheology of gas and polymer solution. Understanding rheology is essential to design mold or die. and it is so important to control the condition of process. Also, this data is got the utmost out of simulation carrying out. In this paper, we will see the measurement of rheology in one phase that mixed polypropylene which contains talc with carbon dioxide of super critical fluid state, and will compare its result with the simulation result.

  • PDF