• Title/Summary/Keyword: Foam Spray Nozzle

Search Result 4, Processing Time 0.016 seconds

Thermal Characteristics of Foams and Discharge of Fire-Protection Foam Spray Nozzle (폼 분무 노즐 방사 분포 및 폼의 열적 특성 연구)

  • Kim, Hong-Sik;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.151-158
    • /
    • 2005
  • A characteristic of discharge for a foam spray nozzle with various parameters was investigated. The discharge patterns from a fire foam spray nozzle are important to evenly spray over a maximum possible floor area. Two parameters of a foam spray nozzle were chosen, and compared with those from the standard one. Also, in order to evaluate the performance of discharged foam agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams were experimentally investigated. A simple repeatable test for fire-protection foams subjected to fire radiation was developed. This test involves foam generation equipment, a fire source for heat generation, and data acquisition techniques. Results show that the bubble size of foam is increased by large inside diameter of orifice or closed air hole, but phenomenon of discharge angle and expansion ratio is opposite. For the case of the open air hole, liquid film of a circular cone discharges with formation, growth, split and fine grain. In case of the closed air hole, a pillar of foam solution discharges with that. Though the temperature gradient in the foam increases with increased foam expansion ratio. it is not change with increased intensity of heat flux.

On the Use of the Primary Breakup Model with Integration of Internal-nozzle Turbulence Impact (노즐내 난류유동 효과를 고려한 액주 분열 모델의 타당성 연구)

  • Sayop Kim;Taehoon Han;Daesik Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.3
    • /
    • pp.105-111
    • /
    • 2024
  • Although the classic Kelvin-Helmholtz model of aerodynamically driven jet breakup(primary breakup) has been widely employed in engine CFD codes for the last three decades, the model is not generally predictive. This lack of predictive capability points to the likelihood of an incorrect physical basis for the model formulation. As such, there have been more recent spray-model development efforts that incorporate additional sources of jet instability and breakup, including nozzle-generated turbulence and cavitation but predictive capabilities have remained elusive. Meanwhile, it should be noted that modern combustors increasingly operate under low-temperature combustion(LTC) conditions, where ambient densities and aerodynamic forces are much lower than under classical operating conditions. Therefore, further consideration of physical model formulation is needed. The previous literature introduced a new primary atomization modeling approach premised on experimental measurements by the Faeth group, which demonstrate that breakup is governed by nozzle-generated turbulence under low ambient density conditions. In this new modeling approach, termed the KH-Faeth model, two different primary breakup models are combined to allow the hybrid breakup modeling approach, i.e. Kelvin- Helmholtz instability breakup mechanism and turbulence-induced breakup are competed via dominant breakup rate evaluation. In the current work, we implement this hybrid KH-Faeth model within the open-source CFD framework OpenFOAM and validate the model against detailed drop sizing measurements stemming from collaborative experiments between Georgia Tech and Argonne National Laboratory.

The Characteristics of Bubbles in a Column Heat Exchanger for the Application of Direct Contact LNG Evaporator (직접접촉식 LNG기화기 응용을 위한 칼럼 열교환기 기포특성에 관한 연구)

  • Kim, S.J.;Han, S.T.;Kim, J.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.2
    • /
    • pp.142-151
    • /
    • 1991
  • In the present investigation, it has been proposed to utilize a direct contact heat exchanger as an evaporator to solve the difficulties such as scaling, corrosion and law thermal efficiencies, associated with the conventional evaporator. Liquified nitrozen was utilized as a working fluid to investigate basic natures of bubble dynamics in the evaporator, and spray nozzles were adopted to inject liquified nitrozen into the spray column with varying flow rates of dispersed phase fluids. Experimentations were carried out in the range of $6.54{\times}10^{-4}kg/s$ - 0.030 kg/s for dispersed phase flow rates with one, three and five nozzle holes. Observing the bubble dynamics for the evaporator the feasibility of utilizing a direct contact heat exchanger as a LNG evaporator has been evaluated. The results show that no eruption phenomena was observed in the present investigation with $LN_2$ and the interface between $N_2$ bubbles and water was fully turbulent. It is believed that the high injection velocity of $LN_2$ through the spray nozzles provide good mixing effects for both heat and mass transfers between water and $N_2$ bubbles. Ice was formed on the surface of the spray nozzle for higher $LN_2$ flow rates. However, even in this case, it is observed that the ice was detached as soon as it was formed. Under the present experimental conditions, the shapes of $LN_2$ bubbles were in the spherical-cap region according to the Clift, Grace and Weber Graphs. The height of foam region caused by the breakup of larger bubbles keeps increasing with high injection velocities until it reaches it's maximum height.

  • PDF

A Study on the Firefighting Equipment in Petrochemical Plants (석유화학공장의 소화설비에 관한 연구)

  • Kim, Bong-Hoon;Choi, Jae-Wook;Lim, Woo-Sub
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.14-22
    • /
    • 2014
  • Hydrocarbon fires and explosions in petrochemical plants have occurred repeatedly every year. But domestic law of fire protection system is insufficient for the worst case scenario. In this study, we analyzed domestic and foreign standards of fire protection system in petrochemical plants and surveyed firefighting equipment of 32 petrochemical plants in ulsan petrochemical complex. Finally, it is necessary to design fire water supply based on the worst case scenario in petrochemical plants and firefighting equipment such as fixed water spray system, elevated monitor nozzle, water curtain, large amount foam monitor system should be installed for the worst case scenario in petrochemical plants.