• Title/Summary/Keyword: Foam Ratio

Search Result 237, Processing Time 0.024 seconds

A Study on the Effect Factor to the Foam Generating Characteristics of High Expansion Foam (고팽창포소화약제 발포특성에 영향을 미치는 요인 연구)

  • Oh, Kyu-Hyung;Lee, Sung-Eun;In, Se-Jin;Lee, Man-Su
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.83-89
    • /
    • 2008
  • Using the high expansion foam generator of ISO 7203-2 which spray 6 liter at 5 bar, foam generation characteristics was studied. Wind flow rate, foam screen, concentration of foam agent solution and concentration of salt of water were varied to find the effect of the parameters on foam generation. Research result showed that expansion ratio of foam was increased with wind flow rate. The expansion ratio of foam in the perforated type standard screen was higher than the wire mesh screen. Expansion ratio and drainage time were increased with increase of foam solution concentration. But a increase of salt concentration in solution showed the decrease of expansion ratio and drainage time.

Thermal Characteristics of Fire-Protection Foams Exposed to Radiant Heating (복사열에 노출된 소방용 폼 약제의 열적 특성 연구)

  • Kim, H.S.;Hwang, I.J.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1570-1575
    • /
    • 2004
  • In order to evaluate the performance of fire-fighting agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams are experimentally investigated. The current research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test for fire-protection foams subjected to fire radiation is developed. This test involves foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of $15^{\circ}C{\sim}20^{\circ}C$. At this point, each trace generally rises to a temperature of approximately $90^{\circ}C$. The temperature gradient in the foam as time passes increases with increased foam expansion ratio. In addition, it is determined that the temperature gradient along the foam for depth decreases with increased foam expansion ratio.

  • PDF

Thermal Characteristics of Foams and Discharge of Fire-Protection Foam Spray Nozzle (폼 분무 노즐 방사 분포 및 폼의 열적 특성 연구)

  • Kim, Hong-Sik;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.151-158
    • /
    • 2005
  • A characteristic of discharge for a foam spray nozzle with various parameters was investigated. The discharge patterns from a fire foam spray nozzle are important to evenly spray over a maximum possible floor area. Two parameters of a foam spray nozzle were chosen, and compared with those from the standard one. Also, in order to evaluate the performance of discharged foam agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams were experimentally investigated. A simple repeatable test for fire-protection foams subjected to fire radiation was developed. This test involves foam generation equipment, a fire source for heat generation, and data acquisition techniques. Results show that the bubble size of foam is increased by large inside diameter of orifice or closed air hole, but phenomenon of discharge angle and expansion ratio is opposite. For the case of the open air hole, liquid film of a circular cone discharges with formation, growth, split and fine grain. In case of the closed air hole, a pillar of foam solution discharges with that. Though the temperature gradient in the foam increases with increased foam expansion ratio. it is not change with increased intensity of heat flux.

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand (실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰)

  • Lee, Hyobum;Shin, Dahan;Kim, Dae-Young;Shin, Young Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

Combustion Characteristics of Premixed Combustor using Nickel Based Metal Foam (니켈합금 Metal Foam을 적용한 예혼합 버너의 연소특성)

  • Lee, Pil Hyong;Hwang, Sang Soon;Kim, Jong Kwang
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2017
  • A premixed combustion has many advantages including low NOx and CO emission, high thermal efficiency and a small volume of combustor. This study focused on combustion characteristics in a premixed combustion burner using the nickel based metal foam. The results show that the blue flame is found to be very stable at heating load 6,300-25,200 kcal/h by implementing the proper nickel based metal foam and baffle plate. The premixed flame mode is changed into green flame, red flame, blue flame and lift off flame with decreasing equivalence ratio. NOx emission was measured 80 ppm(0% oxygen base) from 0.710 to 0.810 of equivalence ratio and CO emission is 90 ppm(0% oxygen base) under the same equivalence ratio. It is also found that the stable blue flame region in flame stability curve becomes wider with increasing the heat load.

Analysis of the Foam Generated Using Surfactant Sodium Lauryl Sulfate

  • Ranjani, G. Indu Siva;Ramamurthy, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • The performance evaluation of a sodium lauryl sulfate to qualify as a foaming agent is presented in this paper. When new surfactants are used a systematic study of production parameters on the foam characteristics needs to be undertaken unlike proprietary foaming agents and foam generator for which manufacturer has predefined the parameters. The relative influence of the foam parameters and optimization of factors were carried out through a systematic experiment design. The foam production parameters namely foam generation pressure and dilution ratio of foaming agents are observed to have significant effect on all foam characteristics with the exception of foam output rate on which only foam generation pressure has influence. The foam with good initial foam density need not necessarily be stable foam. The optimum levels of foam production parameters are determined for the surfactant Sodium lauryl sulfate which can be used to produce stable foam for foam concrete production.

Effect of Foam Volume ratio and Curing Temperature on Compressive Strength of Lightweight using Bottom Ash Aggregates (바텀애시 경량골재 콘크리트 압축강도에 대한 기포 혼입률 및 양생온도의 영향)

  • Lee, Kwang-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.168-169
    • /
    • 2019
  • This study examined the effect of foam volume ratio and curing temperature the air dry density and compressive strength of lightweight concrete using bottom ash. Test results showed that the lightweight concrete possessed the compressive strength of 3.4~22.7 MPa at the air dry density of 1,041~1,583 kg/m3.

  • PDF

The effect of Foam Volume Ratio on the Shear Friction Behavior of Bottom Ash Based Lightweight Aggregate Concrete (바텀애시 골재 기반 경량 콘크리트의 전단마찰거동에 대한 기포 혼입률의 영향)

  • Kim, Jong-Won;Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.183-184
    • /
    • 2020
  • This study evaluated the effect of foam volume ratio on shear friction behavior of bottom ash based lightweight aggregate concrete (LWA_BA). The LWA_BA with different foam volume ratio ranged between 8 and 25 MPa for compressive strength(fck), 17.3~62.5 kN for shear capacity at first shear crack(Vcr), 31.1~73.8 kN for shear friction capacity(Vn), and 0.01~0.03 mm for slip at maximum peak load(S0). fck decreased with increase in the foam volume ratio, showing that this trend was also observed in Vcr, Vn, and S0.

  • PDF

A Study on B Class Fire Extinguishing Performance of Air Ratio in the Compressed Air Foam System (압축공기포 소화설비의 공기포비에 따른 B급 소화성능 연구)

  • Lee, Jang-Won;Lim, Woo-Sub;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • This research is to evaluate the fire extinguishing performance at a mixing ratio of pressurized air in the fire extinguishing system of compressed air foam (CAF) which injects compressed air into foam liquid and then discharging. The experimental device is made use of exclusive foam extinguishing facility for compressed air foam that is produces based on Canada National Laboratory and UL 162 standard, apply model of oil fire (B Class) 20 unit in accordance with "Standard of Model Approval and Product Inspection for Fire Extinguishing Agent" to the fire Extinguishing model. Compressed air is injected through the air mixture and study the tendency depending on increasing air foam ratio 1 : 4, 1 : 7, 1 : 10. In addition, the comparison experiments between synthetic surfactants foam and AFFF carry out with it at the air foam ratio 1 : 4. As a result, in the condition of same discharging flow, fire extinguishing effect of AFFF is the fastest at the air foam ratio 1 : 7 and the slowest at 1 : 10. Moreover, the fire extinguishing effect of AFFF in the comparison expeiments between AFFF and synthetic surfactants foam is faster than the other.

Thermal Characteristics of Eire-Protection Aqueous Film Forming Foams for Various Expansion Ratios (소방용 수성막 폼의 비체적 변화에 따른 열적 특성 연구)

  • Kim Hong-Sik;Kim Youn-Jea;Hwang In-Ju
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • In order to evaluate the performance of fire-protection foams used to protect structures from heat and fire damages, the thermal characteristics of them are experimentally investigated. This research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test apparatus for fire-protection foams subjected to fire radiation is developed. It involves a foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of 115℃~20℃. At this point, each trace generally rises to a temperature of approximately 90℃. The temperature gradient in the foam as time passes increases with increasing the foam expansion ratio. In addition, it is found that the temperature gradient along the foam for depth decreases with increasing the foam expansion ratio.