• Title/Summary/Keyword: Foam Glass

Search Result 130, Processing Time 0.024 seconds

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

Improvement of Flame-Retardant Performance of Polyurethane Foam Coated with Water Glass (물유리코팅에 따른 폴리우레탄 폼의 난연성능 개선에 대한 연구)

  • Kim, Hyeong-Jun;Park, Jewon;Na, Hyein;Lim, Hyung Mi;Chang, Gabin
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • In this study, water glass was applied as a coating material to a rigid polyurethane foam to improve the flame-retardant properties of the foam. The heat release rate of the cone calorimeter of the urethane foam, in which the inorganic water-glass coating layer was applied, decreased rapidly. The water glass coated on the polyurethane surface formed a glassy foam by foaming with water, which did not escape during the vitrification reaction when the foam or glass was heated. The glassy foam formed on the polyurethane foam became a fire-resistant insulation layer that inhibited the combustion of the polyurethane foam for more than 10 min. Water glass was found to improve the flame-retardant properties of the rigid polyurethane foam.

A Study on the Basic Properties of Foam Glass Aggregate for the Application of Insulated Foundation (단열바닥기초 적용을 위한 발포유리 골재의 기초 특성 평가)

  • Sang-Heon, Kim;Soo-Young, Moon;Hyun-Soo, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.420-427
    • /
    • 2022
  • The present study evaluated the physical, mechanical and thermal properties of the foam glass aggregate and insulation foundation with this, in order to promote the use of insulated foundations using domestically produced foamed glass aggregates. As a result of the evaluation, the compacted foam glass aggregate showed at the same level as overseas products in terms of unit volume mass, particle size and other characteristics, and a compressive strength of 40.6 N/cm2, which was superior to the existing organic insulation materials such as XPS. And the thermal conductivity of the foam glass aggregate was 0.84 W/mK, and the thermal transmittance of the specimen simulating the insulation foundation was 0.37 W/mK, so the thermal conductivity of the foam glass aggregate was estimated to be 0.80 W/mK. With these results, it was found that it is possible to use the insulation foundation with re-producted foam glass aggregate by crushing the waste from the process of producing foam glass products.

The Study on Foam Formation in Waterslag-Bentonite System (수광재와 백토조합물에서의 기포형성에 관한 연구)

  • 김종희;송한식
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.248-255
    • /
    • 1977
  • The effect of firing temperature, soaking time and batch composition upon the glass phase and pore formation as well as their distribution in slag foamed glass was investigated. Sulfur dioxide gas produced by the oxidation and reduction of metal sulfide in waterslag was attributed to foam forming agent. Slag foamed glass matrix was mainly composed of 35~60% glas phase and melilite crystalline phase. The increment of bentonite addition in batch lowered the foam forming temperature in studied system. The result showed also that the foam size distribution was broadened as th firing temperature wa inbereased.

  • PDF

Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: experimental results

  • Papa, Enrico;Corigliano, Alberto;Rizzi, Egidio
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.169-188
    • /
    • 2001
  • This note presents the main results of an experimental investigation into the mechanical behaviour of a composite sandwich conceived as a lightweight material for naval engineering applications. The sandwich structure is formed by a three-dimensional glass fibre/polymer matrix fabric with transverse piles interconnecting the skins; the core is filled with a polymer matrix/glass microspheres syntactic foam; additional Glass Fibre Reinforced Plastics extra-skins are laminated on the external facings of the filled fabric. The main features of the experimental tests on syntactic foam, skins and sandwich panels are presented and discussed, with focus on both in-plane and out-of-plane responses. This work is part of a broader research investigation aimed at a complete characterisation, both experimental and numerical, of the complex mechanical behaviour of this composite sandwich.

Evaluation of Thermal Performance and Mechanical Properties in the Cryogenic Environment of Basalt Fiber Reinforced Polyurethane Foam (현무암 섬유 보강 폴리우레탄폼의 열적 성능 및 극저온 환경에서의 기계적 특성 평가)

  • Jeon, Sung-Gyu;Kim, Jeong-Dae;Kim, Hee-Tae;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • LNG CCS which is a special type of cargo hold operated at -163℃ for transporting liquefied LNG is composed of a primary barrier, plywood, insulation panel, secondary barrier, and mastic. Currently, glass fiber is used to reinforce polyurethane foam. In this paper, we evaluated the possibility of replacing glass fiber-reinforced polyurethane foam with basalt fiber-reinforced polyurethane foam. We conducted a thermal conductivity test to confirm thermal performance at room temperature. To evaluate the mechanical properties between basalt and glass-fiber-reinforced polyurethane foam which is fiber content of 5 wt% and 10 wt%, tensile and an impact test was performed repeatedly. All of the tests were performed at room temperature and cryogenic temperature(-163℃) in consideration of the temperature gradient in the LNG CCS. As a result of the thermal conductivity test, the insulating performance of glass fiber reinforced polyurethane foam and basalt fiber reinforced polyurethane foam presented similar results. The tensile test results represent that the strength of basalt fiber-reinforced polyurethane foam is superior to glass fiber at room temperature, and there is a clear difference. However, the strength is similar to each other at cryogenic temperatures. In the impact test, the strength of PUR-B5 is the highest, but in common, the strength decreases as the weight ratio of the two fibers increases. In conclusion, basalt fiber-reinforced polyurethane foam has sufficient potential to replace glass fiber-reinforced polyurethane foam.

Effect of Repetitive Impacts on the Mechanical Behavior of Glass Fiber-reinforced Polyurethane Foam (반복 충격이 유리섬유 강화 폴리우레탄 폼의 기계적 성능에 미치는 영향)

  • Kim, Myung-Sung;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.85-91
    • /
    • 2019
  • In a cryogenic storage structure, the insulation system is in an environment in which fluid impact loads occur throughout the lifetime of the structure. In this study, we investigated the effect of repetitive impact loading on the mechanical performance of glass fiber-reinforced polyurethane foam. The repeated impact loading test was conducted in accordance with the required impact energy and the required number of repetitive impacts. The impact behavior of glass fiber-reinforced polyurethane foam was analyzed in terms of stress and displacement. After the impact test, the specimen was subjected to a compression test to evaluate its mechanical performance. We analyzed the critical impact energy that affected mechanical performance. For the impact conditions that were tested, the compressive strength and elastic modulus of the polyurethane foam can be degraded significantly.

Sound Absorbing Melamine Foam: A Strong Environmental Friendly Tendency Opposing Glass Fiber of Room Using in China

  • Yan, Xiang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.462-462
    • /
    • 2010
  • Glass fiber is widely used in architectural acoustics or building acoustics for sound absorption since it was introduced into China for about 50 years. But recent years, with people pay more attentions to the air cleansing and their health which may be affected by the tiny fiber of the glasswool, a voluntary tendency opposing glass fiber of room using is gradual appeared in China. This paper discusses both the main opinions towards the question whether there are harmful impacts on people health from glassfiber, and the application circumstance of it's applying in china. This paper focuses on another substitute sound absorbing material, melamine foam, to discuss the strong environmental friendly tendency opposing glass fiber of room using in China now.

  • PDF

Flammability of insulators for railroad vehicles (차량용 단열재의 종류에 따른 난연성 평가)

  • Lee Duck-Hee;Lee Cheul-Kyu;Jung Woo-Sung;Kim Sun-Ok;Back Min
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.477-482
    • /
    • 2004
  • New materials are being considered for insulator of railroad vehicles. Because people want more environmental material than glass fiber, there are certain needs of finding safe and economical insulating material. We checked the flammability of some kinds insulators such as PE foam, neoprene rubber foam. melamine foam and glass fiber. You could find out the characteristics such as oxygen index. optical smoke density, toxicity index of that insulators.

  • PDF

The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation (발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구)

  • Yun, Chang-Yeon;Jeong, Jeong-Ho;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.